期刊文献+

非轴对称端壁抑制叶栅二次流分离的实验研究 被引量:2

Experimental Research on Contoured Endwall Depressing Cascade Secondary Flow Seperation
原文传递
导出
摘要 应用热线测量和颗粒图像测速(PIV)技术,测量平端壁叶栅(FEW)和非轴对称端壁叶栅(CEW)的二次流动。基于叶栅内的涡结构和剪切应力,分析非轴对称端壁降低二次流损失的流动机理。实验结果表明:二次流在叶片吸力面的边界层分离导致壁面涡与主流流体的剪切掺混,这是叶栅二次流损失的主要来源;非轴对称端壁通过降低端壁横向压力梯度推迟二次流分离的发生,使壁面涡与主流区产生剪切掺混的范围缩小,并使端壁二次流的流向速度提高、壁面涡的强度降低,在上述两方面作用下叶栅内的剪切应力减小,叶栅二次流损失降低。 The secondary flow in the turbine cascades with flat endwall(FEW)and contoured endwall(CEW)is measured by use of hot wire anemometer and particle image velocimetry(PIV)technologies.The vortical structure and shear stress of the cascades are used to analyze the flow mechanism of the secondary flow loss reduced by CEW.The experimental results show that the separation of secondary flow on the boundary layer of the blade suction surface,resulted in the shear mixing between main flow and wall vortex,which is the main source of secondary flow loss of the cascade.Application of contoured endwall reduces the crosswise pressure gradient of the endwall to delay the separation of the secondary flow,which reduces the shear mixing space between the endwall vortex and the main flow,accelerates the streamwise speed of secondary flow of endwall and reduces the strength of wall vortex,contributing to the reductions of the shear stress and secondary flow loss of the cascades under the effect of the above two aspects.
作者 沈鹏 刘洋 戴韧 SHEN Peng;LIU Yang;DAI Ren(College of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai,China,200293)
出处 《热能动力工程》 CAS CSCD 北大核心 2021年第7期32-38,共7页 Journal of Engineering for Thermal Energy and Power
关键词 非轴对称端壁 边界层分离 二次流 PIV contoured endwall boundary layer separation secondary flow PIV
  • 相关文献

参考文献2

二级参考文献12

  • 1李国君,任光辉,马晓永,李军.叶栅非轴对称端壁成型技术的初步研究[J].工程热物理学报,2006,27(z1):97-100. 被引量:8
  • 2李国君,马晓永,李军.非轴对称端壁成型及其对叶栅损失影响的数值研究[J].西安交通大学学报,2005,39(11):1169-1172. 被引量:51
  • 3马晓勇 李国君 李亮.可压缩性对两方程紊流模型的影响[A]..2004年中国工程热物理年会学术会议[C].西安,2004..
  • 4Menter F R. Two- equation eddy viscosity turbulence models for engineering application[J]. AIAA J, 1994, 32(11): 1 598-1 605.
  • 5Marc G, Nagel Ralf D B. Experimental verified numerical optimization of a 3D-parametrised turbine vane with non-axisymmetric end walls[A]. Proceedings of ASME Turbo Expo 2003, Atlanta, USA, 2003.
  • 6Rose M G. Non-axisymmetric end wall profiling in the HP NGVs of an axial flow gas turbine[A]. Proceedings of ASME Turbo Expo 1994 Power for Land, Sea & Air, New York, USA ,1994.
  • 7Harvey N W, Rose M G. Non-axisymmetric turbine end wall design: three-dimensional linear design system[A]. Proceedings of ASME Turbo Expo 1999 Power for Land, Sea & Air, New York, USA, 1999.
  • 8Hartland J C, Gregory-Smith D. Non-axisymmetric turbine end wall design: experimental validation[A]. Proceedings of ASME Turbo Expo 1999 Power for Land, Sea & Air, New York, USA, 1999.
  • 9Rose M G, Harvey N W. Improving the efficiency of the trend 500HP turbine using non-axisymmetric end walls: experimental validation[A]. Proceedings of ASME Turbo Expo 2001 Power for Land, Sea & Air, New Orleans, USA, 2001.
  • 10Harvey N W, Rose M G. Improving turbine efficiency using non-axisymmetric end walls: validation in the multi-row environment and with low aspect ratio blading[A]. Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands, 2002.

共引文献53

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部