期刊文献+

甲脒基卤化物钙钛矿薄膜的相稳定性 被引量:1

Phase transition stability of formamidine(FA)-based perovskite films
原文传递
导出
摘要 甲脒基卤化物钙钛矿(FAPbI_(3))太阳电池具有光生载流子寿命长、光电转换效率高等优点,是目前光伏领域的研究热点.然而,在室温条件下,FAPbI_(3)的相稳定性差,会从具有光电活性的立方α相逐渐转变为非活性的六方δ相,是限制卤化物钙钛矿太阳电池发展的难题之一.本文研究了不同温度条件下FAPbI3薄膜的相变行为,发现其相稳定性主要受过冷度和离子热运动两种因素的影响,在80℃条件下的相稳定性明显高于20℃的结果.与传统A位掺杂替代FA^(+)和X位掺杂替代I^(-)方法不同,本文采取B位掺杂以Eu2+替代Pb^(2+),发现掺杂的薄膜样品的光吸收谱、晶格衍射峰、光致发光等结构与光学特性的稳定性都得到明显提升,表明该B位掺杂可以有效提高FAPbI_(3)光电活性α相的稳定性.本文结果为FAPbI3钙钛矿的相稳定性研究提供了新的研究思路. Owing to their remarkable power conversion efficiencies and thermal stability at high temperature,FAPbI3 solar cells are one of the hot topics in photovoltaic field.However,α-FAPbI_(3) shows poor phase stability at room temperature that photoactiveα-phase will gradually transform to non-photoactiveδ-phase,which limits the development of FAPbI3 solar cells.We study the phase change behavior of FAPbI_(3) films at various temperatures,and find that the phase stability is affected by the sub-cooling degree and atomic migration rate.The phase stability at 80℃is significantly better than the result at 20℃.In contrast to A site or X site doping strategy,we effectively enhance the stability of photoactiveα-FAPbI_(3) by substituting Pb2+with the Eu^(2+)on B site,and find that the optical absorption spectrum,lattice diffraction peaks,photoluminescence and other structure and optical characteristics of the doped film samples have been significantly improved,indicating that the B-site doping can effectively improve the stability of the photoelectric activeα-phase of FAPbI3.This work provides the new ideas to improve the phase stability ofα-FAPbI3.
作者 孙秋雨 孔维瑜 张才益 杨旭东 SUN QiuYu;KONG WeiYu;ZHANG CaiYi;YANG XuDong(School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2021年第8期84-91,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号11674219,11834011和11911530142)资助项目。
关键词 钙钛矿 太阳电池 相稳定性 EU掺杂 perovskite solar cells phase stability Eu doping
  • 相关文献

参考文献5

二级参考文献65

  • 1Watson IM. Coordin Chem Rev, 2013, 257:2120-2141.
  • 2Mi Z. J Nanophoton, 2009, 3:031602.
  • 3Green M, Zhao J, Wang A, Reece P, Gal M. Nature, 2001, 412:805-808.
  • 4Jo M, Ishida K, Yasuhara N, Sugawara Y, Kawamoto K, Fukatsu S. Appl Phys Lett, 2005, 86:103509.
  • 5Sun Q, Wang YA, Li LS, Wang D, Zhu T, Xu J, Yang CH, Li YF. Nat Photon, 2007, 1:717-722.
  • 6Qasim K, Lei W, Li Q. JNanosciNanotechnol, 2013, 13:3173-3185.
  • 7Farinola GM, Ragni R. Chem Soc Rev, 2011, 40:3467-3482.
  • 8Sessolo M, Bolink HJ. Adv Mater, 2011, 23:1829-1845.
  • 9Grimsdale AC, Chart KL, Martin RE, Jokisz PG, Holmes AB. Chem Rev, 2009, 109:897-1091.
  • 10Wang F, Chen YH, Liu CY, Ma DG. Chem Commun, 2011, 47: 3502-3504.

共引文献15

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部