摘要
随着校园一卡通的应用,学生在校行为数据得以客观记录。为了解决高校学生工作中对于经济困难学生认定存在的主观性强,认定材料烦琐等问题,文章采用数据挖掘方法,采集某高校校园一卡通消费数据,应用神经网络算法构建高校经济困难学生精准认定模型。该方法有助于实现对学生经济困难等级的辅助预测,提高高校学生资助工作的科学化水平。
With the application of campus all-purpose card,students’behavior data in school can be recorded objectively.In order to solve the problem of strong subjectivity and cumbersome identification materials in the work of college students,this paper uses data mining method to collect the consumption data of the campus all-purpose card of a college,and uses neural network algorithm to construct the accurate identification model of college students with financial difficulties.This method is helpful to realize the auxiliary prediction of students’financial difficulty level and improve the scientific level of college students’financial aid work.
作者
余桢伟
李媛
YU Zhenwei;LI Yuan(Suzhou Institute of Technology,Jiangsu University of Science and Technology,Suzhou 215600,China)
出处
《现代信息科技》
2021年第7期6-9,共4页
Modern Information Technology
基金
2019年江苏高校哲学社会科学研究项目(2019SJB905)
2021年江苏科技大学苏州理工学院“暖心助困·励志助学”暨学生工作精品项目(ZZKT202104)。
关键词
数据挖掘
人工神经网络
学生资助
data mining
artificial neural network
students’financial aid