期刊文献+

基于卷积神经网络和MPGA-LM算法的阵列侧向测井快速反演方法 被引量:7

A fast inversion method for array laterolog based on convolutional neural network and hybrid MPGA-LM algorithm
下载PDF
导出
摘要 在大斜度井/水平井环境下,阵列侧向测井受钻井液侵入、地层倾角和各向异性等多种因素影响,导致测井响应复杂,需借助反演手段提取地层真实电阻率.然而,阵列侧向测井三维正演效率低,难以满足测井资料快速反演和油气藏快速评价的需求.为此,本文基于深度学习并联合混合多种群遗传(MPGA)与列文伯格马奎特(LM)算法建立了一种快速反演方法.首先从地层参数敏感性出发,基于严格的三维有限元正演算法,依次确定侵入、各向异性和地层倾角的敏感性大小;其次,引入深度学习和模型可视化技术,实现斜井各向异性地层阵列侧向测井响应的快速正演;最后,基于数据集分解技术和混合MPGA-LM算法,实现斜井各向异性地层电阻率剖面快速精确重构.数值模拟结果表明:斜井各向异性地层中,阵列侧向测井响应对侵入深度敏感性最高,各向异性和地层倾角次之;相较于反向传播神经网络(BPNN),二维卷积神经网络(2D-CNN)能够实现阵列侧向测井响应的快速精确计算,计算一个测井点仅需0.36 ms,精度可达99%左右;基于三层反演模型的MPGA-LM混合算法稳定性强,电阻率参数反演精度高的优点,可用于阵列侧向测井资料的快速处理. Array laterolog responses are affected by drilling fluid invasion,dipping angle and formation anisotropy in high angle(HA)and horizontal(HZ)wells,which results in complex logging responses.Therefore,it is necessary to extract formation resistivity from array laterolog data by inversion method.However,the 3D forward modeling is time-consuming,which can′t support fast inversion and fine evaluation for oil and gas reservoirs.Therefore,a fast inversion scheme is presented in this paper based on deep learning,hybrid multi-population genetic algorithm(MPGA)and Lenvenberg Marquardt(LM)algorithm.The sensitivities of responses to invasion,anisotropy and dipping angle are analyzed firstly based on 3D finite element method(3D-FEM).And then,deep learning and model visualization schemes are introduced to realize the fast forward modeling of array laterolog in anisotropic formation with HA/HZ wells.Finally,based on the data set decomposition technology,the MPGA and L-M algorithms are combined to reconstruct resistivity profile of anisotropic formation rapidly and accurately.The numerical simulation results show:array laterolog responses are more sensitive to invasion than anisotropy and dipping angle.Compared with back propagation neural networks(BPNN),2D convolution neural network(2D-CNN)is more efficient,and it only takes 0.36 ms to calculate a logging point with an accuracy of about 99%.Hybrid MPGA-LM inversion algorithm based on three-layer inversion model is robust,which can be applied to array laterolog data processing.
作者 吴易智 范宜仁 巫振观 邓少贵 张盼 陈诗宇 尹中旭 WU YiZhi;FAN YiRen;WU ZhenGuan;DENG ShaoGui;ZHANG Pan;CHEN ShiYu;YIN ZhongXu(School of Geosciences in China University of Petroleum,Qingdao 266580,China;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science,Qingdao 266237,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第9期3410-3425,共16页 Chinese Journal of Geophysics
基金 国家自然科学基金面上项目(41974146,42074134) 中国石油大学(华东)研究生创新工程(YCX2021005)资助.
关键词 各向异性地层 阵列侧向测井 三维有限元 卷积神经网络 混合反演 Anisotropic formation Array laterolog 3D finite element method Convolution neural network Hybrid inversion
  • 相关文献

参考文献6

二级参考文献103

共引文献147

同被引文献75

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部