期刊文献+

Performance evaluation of deep neural networks for forecasting time-series with multiple structural breaks and high volatility 被引量:2

下载PDF
导出
摘要 The problem of automatic and accurate forecasting of time-series data has always been an interesting challenge for the machine learning and forecasting community.A majority of the real-world time-series problems have non-stationary characteristics that make the understanding of trend and seasonality difficult.The applicability of the popular deep neural networks(DNNs)as function approximators for non-stationary TSF is studied.The following DNN models are evaluated:Multi-layer Perceptron(MLP),Convolutional Neural Network(CNN),and RNN with Long Short-Term Memory(LSTM-RNN)and RNN with Gated-Recurrent Unit(GRU-RNN).These DNN methods have been evaluated over 10 popular Indian financial stocks data.Further,the performance evaluation of these DNNs has been carried out in multiple independent runs for two settings of forecasting:(1)single-step forecasting,and(2)multi-step forecasting.These DNN methods show convincing performance for single-step forecasting(one-day ahead forecast).For the multi-step forecasting(multiple days ahead forecast),the methods for different forecast periods are evaluated.The performance of these methods demonstrates that long forecast periods have an adverse effect on performance.
出处 《CAAI Transactions on Intelligence Technology》 EI 2021年第3期265-280,共16页 智能技术学报(英文)
  • 相关文献

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部