摘要
This study compared the effects of conventional thawing methods(water immersion thawing(WIT,(25±1)℃),natural air thawing(AT,(25±1)℃,relative humidity(RH(65±2)per cent),refrigerator thawing(RT,4℃,RH(80±2)per cent)and low-temperature(LT)combined with high-humidity thawing LT,-1℃to 1℃(LT-1-1),2-4℃(LT2-4),5-7℃(LT5-7)and 8-10℃(LT8-10),RH>95 per cent)on the water-holding capacity,lipid oxidation and biochemical properties of Portunus trituberculatus(P.trituberculatus)myofibrillar protein.The results showed that WIT and AT significantly decreased the water-holding capacity while dramatically increasing lipid oxidation,protein oxidation and degeneration,resulting in serious P.trituberculatus quality deterioration.High humidity was beneficial for P.trituberculatus\.ha\A/\ng.The thawing time of P.trituberculatus under the conditions of LT2-4 was only 39.39 per cent of that of conventional air thawing at 4℃(RT),and the LT2-4 samples not only maintained better water-holding capacity but also had an obviously reduced degree of lipid oxidation,protein oxidation and denaturation.Thawed samples LT2-4 and LT5-7 provided better maintenance of P.trituberculatus quality than the LT-1-1 and LT8-10 samples.The best quality was exhibited after thawing at 2-4℃.The levels of thiobarbituric acid reacting substances,carbonyl content and surface hydrophobicity observably decreased in these samples,while the total sulfhydryl contents dramatically increased compared to those of conventionally thawed samples,indicating lower lipid oxidation and protein oxidation.Moreover,the Ca2+-ATPase activity of the sample thawed at 2-4℃(2.06 μmol Pi/mg prot/h)was markedly higher than that of samples subjected to WIT and AT.The product qualities observed after thawing at-1℃to 1℃,5-7℃and 8-10℃under LT were comparable to that observed by RT.Considering its thawing efficiency and product quality,LT is a suitable method for the thawing of P.trituberculatus,and the ideal thawing conditions were LT at 2-4℃.
作者
Jiangang Ling
Xiaoting Xuan
Zihan Xu
Tian Ding
Xudong Lin
Yan Cui
Donghong Liu
凌建刚;宣晓婷;徐子涵;丁甜;林旭东;崔燕;刘东红(College of Biosystems Engineering and Food Science,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment,Zhejiang University,Hangzhou,China;institute of Agricultural Products Processing,Key Laboratory of Preservation Engineering of Agricultural Products,Ningbo Academy of Agricultural Sciences,Ningbo,China;College of Food,Shenyang Agricultural University,Shenyang,China)
基金
the National Key Research and Development Program of China(No.2016YFD0400304)
the Major Science and Technology Projects of Agricultural of Ningbo,China(No.2016C11016).