期刊文献+

基于大数据迁移学习的灰岩地区排水孔淤堵自动识别技术 被引量:4

Automatic Identification Technique for Siltation and Blockage Conditions in Drainage Pipes in Limestone Areas Based on Big Data and Transfer Learning
下载PDF
导出
摘要 隧道排水管淤堵或者失效,会危及边坡的稳定和公路的交通安全。目前缺乏对排水孔淤堵分类的研究。排水孔淤堵分类对排水管道的后期养护具有重大意义。为探索排水孔淤堵智能化检测方法,文章依托广连高速高峰隧道等粤北实体工程,研究了一种采用模型迁移的方法,将排水孔图像数据输入预训练卷积神经网络进行训练,以对新图像进行分类。在采集的排水孔图像数据集上进行试验,对比了三种不同网络模型对该数据集的准确率,结果表明,使用ResNet-18进行排水孔淤堵分类识别,准确率可达到93%,实现了对排水孔淤堵状态的有效分类,并且随着日后数据集的扩大,识别准确率将会有进一步的提高。 Siltation,blockage or failure of tunnel drainage pipes could endanger the stability of slopes and the traf⁃fic safety of the roads.At present,there is a lack of research on the classification of siltation and blockage conditions in drainage pipes.To explore the intelligent detection method of siltation and blockage conditions in drainage pipes,this paper studies a transfer learning based convolutional neural network classification algorithm for siltation and blockage targets in drainage pipes,taking the Gaofeng tunnel on Guangzhou-Lianzhou Expressway and other tunnel projects in northern Guangdong as the background.By using a model transfer method,the drainage pipe image data are input into a pre-trained convolutional neural network for training in order to classify the new images.The collect⁃ed image dataset of drainage pipes is tested to compare the identification accuracy of three different network models for the dataset.The results show that the classification and identification of siltation and blockage conditions in drainage pipes by using ResNet-18 could reach a 93%accuracy and achieve the effective classification of siltation and blockage conditions in drainage pipes.Also,the identification accuracy will be further improved with the expan⁃sion of the dataset in the future.
作者 李鹏举 郑方坤 吕建兵 吴维俊 刘锋 陈贡发 LI Pengju;ZHENG Fangkun;LV Jianbing;WU Weijun;LIU Feng;CHEN Gongfa(CCCC Guanglian Expressway Investment Development Co.,Ltd.,Qingyuan 511518;CCCC Fourth Harbor Engineering Research Institute Co.,Ltd.,Guangzhou 510220;School of Civil and Transportation Engineering,Guangdong University of Technology,Guangzhou 510006)
出处 《现代隧道技术》 CSCD 北大核心 2021年第4期37-47,共11页 Modern Tunnelling Technology
关键词 排水孔 淤堵分类 卷积神经网络 ResNet-18 Softmax Drainage pipe Classification of siltation and blockage Convolutional neural network ResNet-18 Soft⁃max
  • 相关文献

参考文献12

二级参考文献72

共引文献416

同被引文献50

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部