期刊文献+

基于遗传卷积神经网络的微小零件缺陷分类

Classification of Small Part Defects Based on Hybrid Genetic Convolutional Neural Network
下载PDF
导出
摘要 针对微小零件分类的复杂性,以及各种干扰和个体差异现有分类方法精确度较低的问题,提出利用一种基于遗传卷积神经网络(GA-CNN)。该网络具有分类准确率高、模糊性好的特点。首先利用高清相机采集图像,然后对图像进行预处理,最后利用GA-CNN网络对图像进行分类。通过实验表明该网络分类准确率相比去单一的卷积神经网络准确率高,比较适合在现代的智能制造零件检测中。 Aiming at the complexity of micro-parts classification and the low accuracy of existing classification methods based on interference and individual difference,a new method based on genetic convolutional neural network(GA-CNN)is proposed.The network has the characteristics of high classification accuracy and good modularity.First,the high-definition camera is used to collect the images,then the images are preprocessed,and finally the images are classified by GA-CNN network.Experiments show that the network classification accuracy rate is higher than the single convolutional neural network,more suitable for modern intelligent manufacturing parts detection.
作者 陶沙 司伟 王奎 TAO Sha;SI Wei;WANG Kui(Tongling University,Tongling Anhui 244061,China;China United Network Communication Co.,Ltd,Beijing 100032,China)
出处 《铜陵学院学报》 2021年第3期109-112,共4页 Journal of Tongling University
基金 安徽省自然科学重点项目“遗传卷积神经网络在智能制造系统图像识别技术中的研究与应用”(KJ2018A0484)。
关键词 遗传算法 边缘检测 卷积神经网络 工件测量 genetic algorithm edge detection convolutional neural network work-piece measurement
  • 相关文献

参考文献5

二级参考文献66

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献656

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部