期刊文献+

一种改进蚁群算法的移动机器人路径规划算法 被引量:6

An Improved Ant Colony Algorithm for Mobile Robot Path Planning
下载PDF
导出
摘要 机器人路径规划中,传统蚁群算法收敛速度慢,容易陷入局部最优解的问题。提出一种改进蚁群算法,该算法通过设置动态分级信息素浓度,在迭代过程中逐渐降低信息素浓度,有效地提高了收敛速度;当算法迭代陷入局部最优时,引入了惩罚系数,调整当前最优路径上的信息素浓度,增强算法随机性。仿真实验表明,改进后的蚁群算法加快了收敛速度,解决了局部最优解的问题,提高了全局寻优能力。 In the robot path planning,the traditional ant colony algorithm has slow convergence speed and easy to fall into the local optimal solution.An improved ant colony algorithm is proposed. By setting the dynamic hierarchical pheromone concentration,the algorithm gradually reduces the pheromone concentration in the iterative process,and effectively improves the convergence speed;when the algorithm iterations fall into the local optimum,the penalty coefficient is introduced to adjust the pheromone concentration on the current optimal path to enhance the randomness of the algorithm. Simulation results show that the improved ant colony algorithm speeds up the convergence speed,solves the problem of local optimal solution,and improves the global optimization ability.
作者 沈葭栎 李燕 季建楠 佘宇 SHEN Jiali;LI Yan;JI Jiannan;SHE Yu(College of Automation,Nanjing University of Infomation Science&Technology,Nanjing 210044;College of Computer Internet of Things Engineering,Nanjing University of Information Science&Technology Binjiang College,Wuxi 214105)
出处 《现代计算机》 2021年第22期5-9,共5页 Modern Computer
基金 南京信息工程大学滨江学院校级项目(No.2019bjyng001)。
关键词 蚁群算法 信息素浓度 惩罚系数 路径规划 Ant Colony Algorithm Pheromone Penalty Coefficient Path Planning
  • 相关文献

参考文献7

二级参考文献65

  • 1黄炳强,曹广益.基于人工势场法的移动机器人路径规划研究[J].计算机工程与应用,2006,42(27):26-28. 被引量:38
  • 2王海英,蔡向东,尤波,张礼勇.基于遗传算法的移动机器人动态路径规划研究[J].传感器与微系统,2007,26(8):32-34. 被引量:11
  • 3刘涛,李海滨,段志信.基于人工力场的移动机器人路径规划研究[J].计算机仿真,2007,24(11):144-146. 被引量:7
  • 4Verma O P, Kumar P, Hanmandlu M, et al. High dynamic range optimal fuzzy color image enhancement using artificial ant colony system[J]. Applied Soft Computing, 2012, 12(1): 394-404.
  • 5Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 6Tang J, Ma Y, Guan J, et al. A Max-min ant system for the split delivery weighted vehicle routing problem[J]. Expert Systems with Applications, 2013, 40(18): 7468-7477.
  • 7Bullnheimer B, Hartl R F, Strauss C. A new rank based version of the ant system: A computational study[J]. Central European J for Operations Research and Economics, 1999, 7(1): 25-38.
  • 8Lutuksin T, Pongcharoen E Best-worst ant colony system parameter investigation by using experimental design and analysis for course timetabling problem[C]. The 2nd Int Conf on Computer and Network Technology. Bangkok, 2010: 467-471.
  • 9Zhao N, Wu Z, Zhao Y, et al. Ant colony optimization algorithm with mutation mechanism and its applications[J]. Expert Systems with Applications, 2010, 37(7): 4805- 4810.
  • 10Cecilia J M, Garcia J M, Nisbet A, et al. Enhancing data parallelism for ant colony optimization on gpus[J]. J of Parallel and Distributed Computing, 2013, 73(1): 42-51.

共引文献151

同被引文献64

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部