摘要
近年来,可见光通信的相关技术正在迅速发展,具有很大的发展前景。发光二极管(LED)是可见光通信(VLC)系统中非线性的主要来源,在进行LED非线性建模时,通常采用存储多项式的方法。但是基于存储多项式的方法在建模之后的预失真或者后失真中具有一定的局限性,如在深度学习训练中无法进行反向传播、精度过低无法满足要求。本文提出了一种基于深度学习的可见光通信非线性建模方法,该方法通过神经网络来拟合功率放大器的非线性模型。这种方法在非线性拟合的准确性、对记忆效应的刻画能力和可表示性方面都较传统方法有了很大的提升。
In recent years,the related technology of visible light communication is developing rapidly and has great development prospects. Light-Emitting Diodes( LEDs) are the main source of nonlinearity in Visible Light Communication( VLC) systems. When modeling LED nonlinearities,storage polynomials are usually used. However,methods based on stored polynomials have certain limitations in pre-distortion or postdistortion after modeling,such as the inability to perform back propagation in deep learning training. This paper proposes a nonlinear modeling method for visible light communication based on deep learning. This method has greatly improved the accuracy of nonlinear fitting,the ability to describe memory effects,and the expressibility compared with traditional methods.
作者
任佳鑫
张天壮
REN Jiaxin;ZHANG Tianzhuang(College of Computer Science and Technology,Bejing Jiaotong University,Beijing 100044)
出处
《现代计算机》
2021年第22期55-59,71,共6页
Modern Computer
基金
国家自然科学基金(No.61971029)。
关键词
深度学习
非线性
非线性模型
可见光通信
Deep learning
Nonlinearity
Nonlinear Model
Visible light Communication