期刊文献+

恶劣天气下的车牌信息识别

License Plate Information Recognition Algorithm under Severe Weather
下载PDF
导出
摘要 车牌信息识别包括图像预处理、车牌定位、字符分割、字符识别等步骤。在有雾霾、扬沙的恶劣天气状况下,由于户外能见度较差,造成采集的车牌图像模糊、颜色保真度差,降低了车牌检测和识别的准确性和可靠性。针对这一问题,本文利用图像饱和度估计介质传输的方法对图像去雾,同时使用白平衡的方法来进一步消除黄色或细粉尘对图像色彩造成的偏差。这种方法有效还原了车辆图像原本的信息特征,并且在去雾效率和计算复杂度两方面都表现出了优越的性能,为后续车牌信息的识别奠定了基础。 License plate information recognition includes image preprocessing,license plate location,character segmentation,character recognition and other steps. Under severe weather conditions with haze and blowing sand,poor outdoor visibility results in blurred license plate images and poor color fidelity,which reduces the accuracy and reliability of license plate detection and recognition. In response to this problem,this paper uses the method of image saturation to estimate the medium transmission to defog the image,and at the same time uses the white balance method to further eliminate the deviation of the image color caused by yellow or fine dust. This method effectively restores the original information characteristics of the vehicle image,and shows superior performance in both dehazing efficiency and computational complexity,laying a foundation for subsequent license plate information recognition.
作者 袁意映 刘进锋 YUAN Yiying;LIU Jinfeng(School of Information Engineering,Ningxia Univesity,Y inchuan 750021)
出处 《现代计算机》 2021年第22期112-116,共5页 Modern Computer
基金 宁夏自然科学基金(No.2021AAC03084)。
关键词 去雾 大气散射模型 透射率 车牌识别 Dehaze Atmospheric Scattering Model Transmittance License Plate Recognition
  • 相关文献

参考文献6

二级参考文献51

  • 1李波,曾致远,付祥胜.基于数学形态学和边缘特征的车牌定位算法[J].电视技术,2005,29(7):94-96. 被引量:25
  • 2芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 3王冠,敖志刚,刘永跃,王真军.基于快速连通域标记的车牌字符分割[J].计算机与现代化,2007(6):55-57. 被引量:12
  • 4马洪庆.汽车牌照自动识别[M].杭州:浙江大学,1997,3..
  • 5VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 6VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 7SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 8SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 9CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 10LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.

共引文献2455

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部