期刊文献+

圆钢管混凝土柱滞回性能分析 被引量:1

Analysis of Hysteretic Behavior of Concrete Columns with Round Steel Pipes
下载PDF
导出
摘要 通过确定合理的混凝土和钢材本构模型,采用有限元软件ABAQUS分析圆钢管混凝土柱滞回性能,并基于现有试验验证了有限元模型的准确性,分析了轴压比、钢管壁厚以及混凝土和钢材强度对圆钢管混凝土耗能能力、刚度退化及强度退化的影响。分析结果表明,圆钢管混凝土柱滞回曲线饱满且无明显捏缩。轴压比较小时,刚度和强度基本不退化,轴压比较大时,滞回环面积减小较多,强度和刚度退化有所加快,但不明显。钢管壁厚越大,钢管耗能能力越好,强度退化越慢,这证明钢管混凝土柱具有较好的抗震性能和耗能能力。 By selecting reasonable constitutive models of concrete and steel,the hysteretic behavior of CFST columns is analyzed by using finite element software ABAQUS,and the accuracy of the finite element model is verified based on the existing tests.The effects of axial compression ratio,steel tube wall thickness and concrete and steel strength on the energy dissipation capacity,stiffness degradation and strength degradation of CFST are analyzed.The analysis results show that the hysteretic curve of concrete-filled steel tubular column is full and there is no obvious pinch.When the axial compression ratio is small,the stiffness and strength do not degenerate.When the axial compression ratio is large,the hysteresis area decreases more,and the degradation of strength and stiffness is accelerated,but not obvious.The larger the wall thickness is,the better the energy dissipation capacity is and the slower the strength deg⁃radation is.This proves that CFST columns have good seismic performance and energy dissipation capacity.
作者 杨进芳 YANG Jinfang(Tianshui First Construction Engineering Company,Tianshui Gansu 741000)
出处 《河南科技》 2021年第11期117-119,共3页 Henan Science and Technology
关键词 钢管混凝土 抗震新能 耗能能力 有限元 concrete filled steel tubular column seismic performance energy dissipation capacity finite element analysis
  • 相关文献

参考文献4

二级参考文献24

  • 1张素梅,刘界鹏,王玉银,郭兰慧.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9-18. 被引量:29
  • 2赵国藩,张德娟,黄承逵.钢管砼增强高强砼柱的抗震性能研究[J].大连理工大学学报,1996,36(6):759-766. 被引量:60
  • 3Tomii M, Sakino K, Xiao Y, Watanabe K. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube [ C ]// Proceeding of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China, 1985 : 119-125.
  • 4Xiao Y, Tomii M, Sakion K. Experimental study on design method to prevent shear failure of reinforced concrete short circular columns by confining in steel tube [ J ]. Transactions of Japan Concrete Institute, 1986, 8 : 535- 542.
  • 5Masahide Tomii, Kenji Sakino, Kouichi Watanabe, Yan Xiao. Lateral load capacity of reinforced concrete short columns confined by steel tube [ C ]// Proceedings of the International Speciality conference on Concrete-filled Steel Tubular Structures. Harbin, China, 1985: 19-26.
  • 6Tomii M, Sakino K, Xiao Y. Ultimate moment of reinforced concrete short columns confined in steel tube [ C ]// Proceedings of Pacific Conference on Earthquake Engineering. New Zealand, 1987, (2) :11-12.
  • 7AboutahaR S, Machado R I. Seismic resistance of steeltubed high-strength reinforced-concrete columns [ J ]. Journal of Structural Engineering, 1999, 125 (5):485-494.
  • 8ACI Committee 318 Building code requirements for structural concrete ( ACB18-02 ) and commentary ( ACI318 R-02) [ S ]. American Concrete Institute, 2002.
  • 9Mander J B, Priestley M J N, Park R. Theoretical stressstrain model for confined concrete [ J ]. Journal of the Structural Engineering, 1988, 114 (8): 1804-1823.
  • 10Kang C H, Moon T S. Behavior of concrete-filled steel tubular beam-column under combined axial and lateral forces [C]. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998:961-966.

共引文献176

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部