摘要
针对传统的欧氏聚类算法无法同时对近处和远处的障碍物点云进行精准检测和分割,容易造成错检和漏检的情况,提出一种欧氏聚类算法的改进方法,可以根据点云与激光雷达之间的距离动态地选择阈值,从而快速且准确地完成聚类。实验表明:该方法能同时对近处和远处的障碍物点云进行快速且准确的聚类。
The traditional Euclidean clustering algorithm cannot accurately detect and segment the near and far obstacle point clouds at the same time,which is easy to cause false detection and missed detection.To solve the problems above,this paper proposes an improved method of Euclidean clustering algorithm,which can dynamically select the threshold according to the distance between the point cloud and the lidar,so as to complete the clustering quickly and accurately.Experiments show that this method can cluster the near and far obstacle point clouds quickly and accurately.
作者
张阳
葛平淑
崔芳磊
周宏宇
张涛
ZHANG Yang;GE Ping-shu;CUI Fang-lei;ZHOU Hong-yu;ZHANG Tao(School of Electromechanical Engineering, Dalian Minzu University, Dalian Liaoning 116605, China)
出处
《大连民族大学学报》
2021年第3期223-227,共5页
Journal of Dalian Minzu University
基金
中国博士后科学基金项目(2018M641688)
辽宁省教育厅科学研究经费项目(LJYT201915)。
关键词
智能交通
障碍物检测
欧氏聚类
激光雷达
intelligent transportation
obstacle detection
Euclidean clustering
lidar