摘要
风机叶片在运行过程中,由于环境和高速旋转等原因会产生各种缺陷,这些缺陷直接影响风机发电量,严重者甚至导致叶片产生不可逆的损伤,带来巨大的经济损失。针对风机叶片的缺陷识别和检测,采用优化后的SSD(单步多框目标检测)算法,该算法从采集的缺陷样本中自主学习叶片缺陷特征,实现风机叶片缺陷的自动检测、定位和分类。最终在测试数据集上达成mAP(平均精度均值)为82.1%,召回率为90.3%。该算法已应用于企业级项目中,实践证明深度学习算法在企业级项目中具有很好的鲁棒性和商业价值。
Due to environment and high-speed rotation,turbine blades are prone to various defects that impair generation capacity,or even lead to irreversible damage to the turbine blade,resulting in huge economic losses.Aimed for turbine blade defect identification and detection,the paper adopts an optimized SSD(single shot multibox detector)algorithm,which can learn the features of defects independently and automatically detect,locate and classify blade defects.The model mAP(average mean precision)reaches 82.1%and the recall rate 90.3%.This algorithm has been applied to enterprise projects,and it shows that the deep learning algorithm has good robustness and commercial value in enterprise projects.
作者
应俊
刘迅
曾学仁
方亮
田楠
YING Jun;LIU Xun;ZENG Xueren;FANG Liang;TIAN Nan(Shanghai Clobotics Technology Co.,Ltd.,Shanghai 201100,China;CTGR Northwest China Branch,Lanzhou 730070,China)
出处
《浙江电力》
2021年第8期47-52,共6页
Zhejiang Electric Power
关键词
风机叶片
缺陷检测
SSD算法优化
超大分辨率
turbine blade
defect detection
SSD algorithm optimization
ultra-high resolution