期刊文献+

Forensic Automatic Speaker Recognition Based on Likelihood Ratio Using Acoustic-phonetic Features Measured Automatically 被引量:4

原文传递
导出
摘要 Forensic speaker recognition is experiencing a remarkable paradigm shift in terms of the evaluation framework and presentation of voice evidence.This paper proposes a new method of forensic automatic speaker recognition using the likelihood ratio framework to quantify the strength of voice evidence.The proposed method uses a reference database to calculate the within-and between-speaker variability.Some acoustic-phonetic features are extracted automatically using the software VbiceSauce.The effectiveness of the approach was tested using two Mandarin databases:A mobile telephone database and a landline database.The experimenfs results indicate that these acoustic-phonetic features do have some discriminating potential and are worth trying in discrimination.The automatic acoustic-phonetic features have acceptable discriminative performance and can provide more reliable results in evidence analysis when fused with other kind of voice features.
出处 《Journal of Forensic Science and Medicine》 2015年第2期119-123,共5页 法庭科学与法医学杂志(英文)
  • 相关文献

参考文献1

二级参考文献8

  • 1Wang H P,Yang J. The fusion of forensic speaker verification systems[A].Shanghai,China,2011.
  • 2Morrison G S. Measuring the validity and reliability of forensic likelihood-ratio systems[J].{H}SCIENCE & JUSTICE,2011,(03):91-98.
  • 3Rose P. Forensic voice comparison with secular shibboleths:A hybrid fused GMM-multivariate likelihood ratio-based approach using alveolo-palatal fricative cepstral spectra[A].Prague,Czech republic,2011.
  • 4Skerrett J,Neumann C,Mateos-Garcia I. A Bayesian approach for interpreting shoemark evidence in forensic casework:accounting for wear features[J].{H}Forensic science international,2011,(1-3):26-30.
  • 5Morrison G S. Forensic voice comparison and the paradigm shift[J].{H}SCIENCE & JUSTICE,2009,(04):298-308.
  • 6Meuwly D,Drygajlo A. Forensic speaker recognition based on a Bayesian framework and Gaussian mixture modelling (GMM)[A].2001.
  • 7Alexander A,Drygajlo A. Scoring and direct methods for the interpretation of evidence in forensic speaker recognition[A].Jeju,Korea,2004.
  • 8Brummer N,Preez J du. Application-independent evaluation of speaker detection[J].Computer Speech & Language,2006,(2/3):230-275.

共引文献3

同被引文献27

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部