摘要
介绍了一种基于机器学习的故障检测算法,该算法利用非线性回归器估计被测组件对外部变量的响应,并将其应用于暖通空调冷水机组的故障检测。基于参数先验和观测值的条件似然,采用高斯过程(GP)回归算法建立可预测的概率模型。然后,预测误差与估计方差作为支持向量机(SVM)异常检测器的输入,该检测器能够以无监督的方式检测冷水机组的故障,从而实现在线故障诊断。从实验中可以看出,该算法改进了标准异常检测。
This paper introduces a fault detection algorithm based on machine learning.The algorithm uses a nonlinear regressor to estimate the response of the tested component to external variables,and applies it to the fault detection of HVAC chillers.Based on the prior parameters and the conditional likelihood of observations,a predictable probability model is established by Gaussian process(GP)regression algorithm.Then,the prediction error and estimation variance are used as the input of support vector machine(SVM)anomaly detector,which can detect the fault of chiller in an unsupervised way,so as to realize on-line fault diagnosis.It can be seen from the experiment that the algorithm improves the standard anomaly detection.
作者
张婕妤
ZHANG Jieyu(Shandong Tianrui Heavy Industry Co.,Ltd.,Weifang 261061,China)
出处
《山东冶金》
2021年第4期47-52,共6页
Shandong Metallurgy
基金
山东省重点研发计划(重大科技创新工程)项目,磁悬浮鼓风机制造关键技术研究与应用,项目编号2020CXGC010201。
关键词
冷水机组
故障检测
概率模型
回归算法
检测算法
chillers
fault detection
probability model
regression algorithm
detection algorithm