期刊文献+

融合用户特征的微博信息情感演化模型 被引量:3

Microblog Information Emotional Evolution Model Integrating User Features
下载PDF
导出
摘要 大量社交媒体涌现网络,微博作为舆情传播的重要渠道,研究微博网络中的舆情信息传播过程对有关部门舆情治理以及控制具有重要意义.在微博网络信息传播的研究中,往往忽略了用户属性和遗忘机制等因素对于微博信息情感演化的影响,针对这一问题,本文在传统SIR信息传播模型基础上考虑不同用户的情感传播概率和遗忘概率,提出微博网络信息情感传播模型.最后,将改进的微博信息情感传播模型与ESIS和EIC模型进行对比,实验结果显示,提出的改进模型拟合值与真实数据相比误差更小,预测准确度更高,证明本文所提模型能够更准确地描述信息情感发展趋势. A large number of social media emerged in the network,microblog as an important channel of public opinion dissemination,research on the process of public opinion information dissemination in microblog network is of great significance to the governance and control of public opinion of relevant departments.In the research of microblog network information dissemination,the influence of user attributes and forgetting mechanism on the emotional evolution of microblog information is often ignored.In order to solve this problem,this paper proposes a microblog network information emotional communication model,which is based on the traditional SIR information dissemination model,considering the emotional transmission probability and forgetting probability of different users.Finally,the improved model is compared with ESIS and EIC models.The experimental results show that the fitting value of the improved model has smaller error and higher prediction accuracy than the real data,which proves that the proposed model can more accurately describe the development trend of information emotion.
作者 曹春萍 李丽 CAO Chun-ping;LI Li(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science&Technology.Shanghai 200093.China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第8期1655-1661,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71901144)资助。
关键词 情感演化 SIR模型 遗忘机制 情感传播概率 emotional evolution SIR model forgetting mechanism emotional transmission probability
  • 相关文献

参考文献6

二级参考文献63

  • 1潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究[J].系统仿真学报,2006,18(8):2346-2348. 被引量:86
  • 2王夏洁,刘红丽.基于社会网络理论的知识链分析[J].情报杂志,2007,26(2):18-21. 被引量:65
  • 3http://bmi.osu.edu/esaule/public- website/slides/saule13-umassboston.pdf.
  • 4Guan W, Gao H, Yang M, Li Y, Ma H, Qian W, Cao Z, Yang X .2014, Physica A: Statistical Mechanics and its Applications 395 340.
  • 5张彦超,刘云,张海峰,程辉,熊菲.2011,物理学报,60050501.
  • 6Zhao L, Guan X H, Yuan R X .2012, Knowledge and In- formation Systems 31 371.
  • 7Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M .2007, International Conference on Data Mining, Pro- ceedings of the 7th SIAM International Conferenceon Data Mining Minneapolis, Minnesota, USA, April 26-28, .2007, p551.
  • 8Xu R Z, Li H L, Xing C M .2013, Int. J. Comput. Sci. Appl. 1 1.
  • 9May R M, Lloyd A L .2001, Phys. Rev. E 64 066112.
  • 10Moreno Y, Pastor Satorras R, Vespignani A .2002, Europ. Phys. J. B 26 521.

共引文献51

同被引文献31

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部