摘要
为构建区域土壤-水稻籽粒镉(Cd)耦合关系模型,通过文献调研获取369组数据,采用广义线性回归(GLM)、梯度提升机器(GBM)、随机森林(RF)和Cubist等方法,以文献共有的土壤p H和总Cd含量(SoilCd)为自变量、水稻籽粒Cd含量(GrainCd)为因变量构建模型,并以实测土壤pH、SoilCd和GrainCd数据验证,分析比较不同模型的预测能力。结果表明:GLM、GBM、RF和Cubist模型的性能接近,其决定系数R2都在0.5左右,但RF模型对实测数据的拟合效果最好(R^(2)=0.534)。因此,基于机器学习的RF模型能在区域尺度合理预测稻米Cd含量。
In order to establish regional models for describing soil-rice grain cadmium(Cd)coupling relationship,we collected 369 groups of data from literature to construct models,which used generalized linear model(GLM),gradient boosting machine(GBM),random forest(RF)and Cubist methods,with soil pH and total Cd content(SoilCd)as independent variables and Cd content in rice grains(GrainCd)as the dependent variable.The robustness of those models in the GrainCd predictions was evaluated using the measured data of soil pH,SoilCd and GrainCd.Results showed that GLM,GBM,RF and Cubist models showed similar performance,with all of their coefficients of determination(R^(2))being around 0.5.The measured GrainCd values were best matched to the prediction of the RF model(R^(2)=0.534).Therefore,the RF model,which is based on machine learning,was capable to reasonably predict Cd content in rice grains at the regional scale.
作者
陈家乐
唐林茜
相满城
张春华
葛滢
陈效民
CHEN Jia-le;TANG Lin-xi;XIANG Man-cheng;ZHANG Chun-hua;GE Ying;CHEN Xiao-min(College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China;Laboratory Centre of Life Science,Nanjing Agricultural University,Nanjing 210095,China)
出处
《生态学杂志》
CAS
CSCD
北大核心
2021年第8期2341-2347,共7页
Chinese Journal of Ecology
基金
国家重点研发计划(2016YFD0800306,2017YFD0800305)资助。
关键词
土壤
水稻
镉
耦合关系模型
机器学习
soil
rice
Cd
coupling relationship model
machine learning