期刊文献+

基于互信息的多块k近邻故障监测及诊断 被引量:4

Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information
下载PDF
导出
摘要 由于传统的k近邻故障监测不考虑过程的局部信息,只建立一个全局模型,因此提出一种基于互信息的多块k近邻故障监测方法。首先,考虑建模数据的非线性和非高斯等特性,基于变量间的互信息进行子块构建;然后,利用k近邻方法对每个子块进行建模与监测,子块中的k近邻模型反映了更多的过程局部特征;最后,将所有子块的监测结果通过贝叶斯推断方法进行融合,并采用基于马氏距离的故障诊断方法辨识故障源。通过对田纳西−伊斯曼过程和高炉炼铁过程中的应用仿真,监测结果表明所提方法的可行性和有效性。 The traditional k-nearest neighbor(kNN)fault monitoring does not take into account the process of local information and only builds a global model.Thus,a multi-block kNN fault monitoring algorithm based on mutual information is proposed.First,with the nonlinear and non-Gaussian characteristics of the modeled data taken into consideration,subblocks are constructed based on mutual information between variables.Then,the kNN algorithm is used to model and monitor each subblock,in which the kNN model reflects more local characteristics of the process.Lastly,the monitoring results of all subblocks are fused by the Bayesian inference method,and a fault diagnosis method based on Mahalanobis distance is used to identify the source of faults.Through the application simulation in the Tennessee Eastman process and the blast furnace ironmaking process,the monitoring results show the feasibility and effectiveness of the proposed method.
作者 郑静 熊伟丽 ZHENG Jing;XIONG Weili(China Key Laboratory of Advanced Process Control for Light Industry Ministry of Education,Jiangnan University,Wuxi 214122,China;School of the Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《智能系统学报》 CSCD 北大核心 2021年第4期717-728,共12页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61773182) 国家重点研发计划子课题(2018YFC1603705-03).
关键词 互信息 多块建模 K近邻 过程监控 故障检测 贝叶斯推断 故障诊断 马氏距离 mutual information multi-block modeling k-nearest neighbor process monitoring fault detection Bayesian inference fault diagnosis Mahalanobis distance
  • 相关文献

参考文献8

二级参考文献75

  • 1刘世成,王海清,李平.青霉素生产过程的在线统计监测与产品质量控制[J].计算机与应用化学,2006,23(3):227-232. 被引量:9
  • 2刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 3赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 4He P Q, Wang Jin. Principal component based k- nearest-neighbor rule for semiconductor process fault detection [ C ]//American Control Conference, June 11-13,2008. Seattle. conference Publications, 2008. 1606 - 1611.
  • 5He P Q,Wang Jin. Fault Detection Using the k-nea- rest Neighbor Rule for Semiconductor Manufactur- ing Processes [J].IEEE Transactions on Semicon- ductor Manufacturing,2007,20 (4) :345 - 354.
  • 6Birol G, Cinar A. A Modular Simulation Package for Fed-batch Fermentation: Penicillin Production [ J ]. Computers & Chemical Engineering, 2002,26 ( 11 ) : 1553 - 1565.
  • 7Ghoraani B, Krishnan S. Time-frequency matrix feature extraction and classification of environmental audio signals[J]. IEEE Trans- actions on Audio, Speech, and Language Processing, 2011, 19(7): 2197-2209.
  • 8Vesa Peltonen, Juha Tuomi, Anssi Klapuri, Jyri Huopaniemi, and Timo Sorsa, Computational Auditory Scene Recognition[C]// Proc. of ICASSP Florida, USA, May 2002.
  • 9LU Lie, ZHANG Hongiang, JIANG Hao. Content analysis for audio classification and segmentation[J]. IEEE Transactions on Speech and Audio Processing, 2002, 10(7): 504-516.
  • 10MA Ling, Ben Milner, Dan Smith. Acoustic environment classifi- cation[J]. ACM Transactions on Speech and Lauguage Processing, 2006, 3(2): 1-22.

共引文献70

同被引文献37

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部