期刊文献+

基于深度学习的单像素相机超分辨率成像优化 被引量:3

Super-Resolution Imaging Optimization of Single Pixel Camera Based on Deep Learning
下载PDF
导出
摘要 基于压缩感知和单像素成像的基本原理,设计了一种用于图像超分辨率重建的新型深度卷积神经网络架构。这种单像素超分辨率成像算法成功地将深度学习图像超分辨率重建技术与压缩感知单像素成像技术相结合,从而发展出一种全新的深度学习单像素成像优化方法。与传统的常规压缩感知图像重构算法相比,该算法有效提升了图像超分辨率重建精度和单像素成像质量。通过图像重建的仿真实验和单像素相机的成像实验验证,结果表明这种基于深度学习的新型单像素相机成像方式具有良好的性能表现。 Based on the basic principles of compressed sensing(CS)and single pixel camera imaging,a new deep convolutional neural network architecture for image super-resolution reconstruction is redesigned.The new single pixel super-resolution imaging algorithm successfully combines deep learning image super-resolution reconstruction technology with compressed sensing single pixel imaging technology to develop an entirely new deep learning based optimized imaging method of single pixel camera.Compared with the conventional CSbased algorithms,the accuracy of image super-resolution reconstruction and the imaging quality of single pixel camera are improved effectively.The good performance of the new proposed deep learning imaging method of single pixel camera has been verified by simulation experiments of image reconstruction and imaging experiments of single pixel camera.
作者 魏子然 杨威 张建林 徐智勇 刘永 王盛杰 WEI Ziran;YANG Wei;ZHANG Jianlin;XU Zhiyong;LIU Yong;WANG Shengjie(Institute of Optics and Electronics of the Chinese Academy of Sciences,Chengdu 610209,CHN;School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,CHN;University of Chinese Academy of Sciences,Beijing 100049,CHN;Civil Aviation Flight University of China,Guanghan 618307,CHN)
出处 《半导体光电》 北大核心 2021年第3期412-417,共6页 Semiconductor Optoelectronics
关键词 单像素成像 压缩感知 深度学习 超分辨率 图像重构 single pixel imaging compressed sensing deep learning super-resolution image reconstruction
  • 相关文献

参考文献4

二级参考文献124

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 3Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 4B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 5Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 6M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 7R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 8M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 9K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007
  • 10H Zayyani,M Babaie-Zadeh.Thresholded smoothed-L0 (SL0)dictionary learning for sparse representations. IEEE Inter-national Conference on Acoustics,Speech and Signal Process-ing . 2009

共引文献322

同被引文献38

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部