摘要
针对终端区交通拥挤问题,基于宏观基本图理论对终端区交通相态的智能识别及其流量控制展开研究。采用宏观基本图理论,考虑终端区交通流的特点,构建空中交通宏观基本图的绘制方法及交通流相态的划分方法,建立基于全连接神经网络的终端区交通相态智能识别算法,提出基于MFD的终端区交通流的边界控制算法,利用厦门终端区的真实飞行轨迹数据进行实例验证,结果表明该方法能够快速、有效地实现对空中交通相态的自动识别及拥挤状况的改善。
Aiming at the problem of traffic congestion in terminal area,the intelligent identification and flow control of traffic phase state in terminal area are studied based on Macroscopic Fundamental Diagram(MFD)theory.Based on the Macroscopic Fundamental Diagram(MFD)theory and the characteristics of traffic flow in terminal area,the drawing method of air traffic macro basic map and the division method of traffic flow phase state are constructed.The intelligent recognition algorithm of traffic phase state in terminal area based on machine learning is established.The boundary control algorithm of traffic flow in terminal area based on MFD is proposed.The real flight trajectory data of terminal area is used for example verification.The results show that the method can quickly and effectively realize the automatic identification of air traffic phase state and the improvement of congestion situation.
出处
《科技创新与应用》
2021年第24期43-47,共5页
Technology Innovation and Application
基金
国家自然科学基金(编号:71801215)
中央高校基本科研业务费中国民航大学专项(编号:3122016C009)
中国民航大学大学生创新创业训练计划项目(编号:IEKCAUC2020005)。
关键词
宏观基本图
空中交通流
识别
控制
智能
Macroscopic Fundamental Diagram(MFD)
air traffic flow
identification
control
intelligence