期刊文献+

基于多示例学习的长文档检索 被引量:2

Long Document Retrieval Based on Multi-instance Learning
下载PDF
导出
摘要 随着互联网信息的爆炸式增长,文档检索已经成为自然语言处理的热点问题。对于长文本检索,使用传统的基于词频的表示方法往往忽略了文本的语义信息,而使用嵌入模型进行文本表示,受输入长度的影响,长文本通常会被截断,此外,一些相似度计算方法会受到文本长度的影响。针对上述问题,提出将多示例学习框架用于文档检索中,以语义相对完整的句子为单位对文本进行切分,将文本表示成包,句子作为示例,通过示例之间的相关性来计算包之间的相关性得分,并将该得分与使用传统文档级检索即将整个文档作为一个单示例计算出的相似度得分相结合,从而检索出相关文档。在Med数据集上的实验结果表明,基于多示例的检索方法能在一定程度上提高文档检索的性能。 With the explosive growth of Internet information,document retrieval has become a hot issue in natural language processing.For long text retrieval,the traditional representation method based on word frequency tends to ignore the semantic information of the text,and if the embedded model is used for text representation,the long text will usually be truncated due to the influence of the input length.In addition,some similarity calculation methods will be affected by the text length.A multi-instance learning framework is proposed to be used in document retrieval.The text is segmented by sentences with relatively complete semantics,and the text is represented as a bag.The sentences are taken as instances,and the similarity score between bags is calculated by the similarity between the instances,so as to retrieve the relevant documents.Experimental results on Med dataset show that the proposed method can improve the performance of document retrieval to a certain extent.
作者 田媛 郝文宁 靳大尉 陈刚 邹傲 TIAN Yuan;HAO Wenning;JIN Dawei;CHEN Gang;ZOU Ao(Command&Control Engineering College,Army Engineering University of PLA,Nanjing 210000,China)
出处 《无线电工程》 北大核心 2021年第9期886-892,共7页 Radio Engineering
基金 国家自然科学基金资助项目(61806221)。
关键词 文档检索 多示例学习 相关性得分 document retrieval multi-instance learning similarity score
  • 相关文献

参考文献4

二级参考文献31

  • 1DATTA R, LI J, WANG J Z. Content-based image retrieval-approaches and trends of the new age[ C]// Proceedings of the 7th International Workshop on Multimedia Information Retrieval, Inconjunction with ACM International Conference on Multimedia. New York: ACM, 2005:253-262.
  • 2DATTA R, JOSHI D, LI J, et al. Image retrieval: Ideas, influences, and trends of the new age[ J]. ACM Computing Surveys, 2008, 40(2): 1-65.
  • 3ZHANG QI, GOLDMAN S A. Content-based image retrieval using multiple-instance learning[ C]//Proceedings of the 19th Internation- al Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2002:682-689.
  • 4RAHMANI R, GOLDMAN S A. Localized content-based image retrieval[ C]//Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval. New York: ACM, 2005:227 - 236.
  • 5CHEN YIXIN, WANG J Z. Image categorization by learning and reasoning with regions[ J]. Journal of Machine Learning Research, 2004, 5(8) : 913 - 939.
  • 6CHEN YIXIN, BI JINBO, WANG J Z. MILES: Multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 1931 - 1947.
  • 7DIETTERICH T G, LATHROP R H, LOZANO-PEREZ T. Solving the multiple instance problem with axis-parallel rectangles[ J]. Artificial Intelligence, 1997, 89(12):31 -71.
  • 8MacQUEEN J. Some methods for classification and analysis of multivariate observations[ C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Los Angeles: University of California Press, 1967:281 -297.
  • 9Christopher D. Manning, Prabhakar Raghavan, Hin- rich Schutze. Introduction to Information retrieval ~-M]. Cambridge:Cambridge University Press, 2009.
  • 10Gerard Salton. Automatic Information Organization and Retrieval[M]. New York: McGraw-Hill, 1968.

共引文献15

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部