期刊文献+

一种组稀疏高阶变分的图像复原模型

A Higher Order Total Variation with Group Sparsity Restricted Term for Image Restoration
下载PDF
导出
摘要 为了更好地利用图像的稀疏性以提高变分模型的图像复原性能,在自适应高阶变分模型中对图像的一阶梯度加以组稀疏限制,建立一种非凸的组稀疏高阶变分模型。为实现该非凸模型的优化求解,采用交替方向乘子法将模型的极小化问题分解成多变量的子问题,进而采用IRL1与MM算法分别求解高阶变分与组稀疏极小化问题,实现退化图像的复原处理。通过对比实验证明,提出的组稀疏高阶变分模型有效利用图像的自相似性与稀疏性,能更好地复原图像的结构与纹理信息,消除了阶梯现象的影响,获得了更高的峰值信噪比与结构相似度,图像复原性能更优。 In order to enhance restoration performance of total variation and use sparsity to reconstruct image information,the group sparse representation of image’s gradient is used to restrict the adaptivity high-order total variational model,and a novel non-convex group sparse high-order variational model is proposed.To optimize the non-convex model,IRL1 and majorization-minimization iterative algorithms are respectively used to minimize higher order total variation and sparse subproblems of the alternating direction method of multipliers.The experimental results in terms of peak signal-to-noise ratio and structure similarity index measure show that the proposed model eliminates staircase artifact,recovers more structure and texture,and shows better performance than the compared models by utilizing the self-similarity and sparsity of images.
作者 王鸿 陈明举 熊兴中 张劲松 杨志文 WANG Hong;CHEN Mingju;XIONG Xingzhong;ZHANG Jinsong;YANG Zhiwen(Artificial Intelligence Key Lab of Sichuan Province,Sichuan University of Science&Engineering,Yibin 644000,China;School of Automation and Information Engineering,Sichuan University of Science&Engineering,Yibin 644000,China)
出处 《无线电工程》 北大核心 2021年第9期893-900,共8页 Radio Engineering
基金 国家自然科学基金资助项目(41374130) 四川省科技厅项目(2020JDJQ0075,2020YFSY0027) 人工智能四川省重点实验室项目(2020RZY02) 四川轻化工大学研究生课程建设项目(KA202030)。
关键词 图像复原 组稀疏 高阶变分 交替方向乘子法 image restoration group sparsity high-order total variation alternating direction method of multipliers
  • 相关文献

参考文献4

二级参考文献20

  • 1曾泳泓.r-循环矩阵的快速算法和并行算法[J].数值计算与计算机应用,1989,10(1):36-42. 被引量:19
  • 2张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 3M. Pease. An adaptation of the fast Fourier transform for parallel processing[J]. J. Assoc. Comput.Mach. , 1986,15: 252~264.
  • 4RUDIN L, ()SHER S. FATEMI K. Nonlinear total variation based noise removal algorithms [J]. Physica D : N<m-linear Phetio/>ie)ia . 1992. 60(14) : 259-268.
  • 5Cl IAMBOLLK A. An algorithm for total variation minimization and applications [J]. Jourtml of Mathematical I/n-aging and Vision . 2004, 20(2) : 89-97.
  • 6BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and de-blurring problems [J]. IEEE Transactions on Image Processing,2009,18(11) : 2419-2434.
  • 7LYSAKER M,LUNDERVOLD A, TAI X C. Noise removal using fourth-order partial differential equation withapplications to medical magnetic resonance images in space and time [J]. IEEE Transactions on Image Processing,2003, 12(12): 1579-1590.
  • 8LIU X W,HUANG L H, GUO Z Y. Adaptive fourth-order partial differential equation filter for image denoising[J]. Applied Mathematics Letters , 2011,24(8) : 1282-1288.
  • 9SONG B. Topics in variational PDE image segmentation ? inpainting and denoising [D]. Los Angeles, USA :University of California, 2003.
  • 10GILBOA G,SOCHEN N, ZEEVI Y Y. Image enhancement and denoising by complex diffusion processes [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8) ; 1020-1036.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部