期刊文献+

一种基于CNN-RNN的社交媒体中突发事件感知方法 被引量:4

Emergency Detection Method in Social Media Based on CNN-RNN
下载PDF
导出
摘要 针对传统社交媒体信息感知中过度依赖语义及社会网络信息的问题,提出一种基于CNN与RNN融合的社交媒体中突发事件的感知方法。该方法在定义社交媒体中时空语义问题的基础上,构建融合CNN-RNN的突发事件感知模型,通过多层CNN网络对社交消息按照主题进行聚类,然后将同一主题的消息按照时间序列输入RNN循环网络单元,当事件消息传播到一定范围或一定时长时,RNN输出相应突发事件主题,并通过地理位置匹配找到现场用户发出的源消息,对这些源消息进行事件画像以实现对突发事件的感知。实验结果表明,与传统基于语义和社会网络信息的方法相比,本文方法不需要构建复杂的社会网络模型,不依赖于语义信息检索,F 1值达到93.4%,能够快速实现对突发事件的精准感知。 In response to the problem of excessive reliance on semantics and social network information in traditional social media information detection,a method for detecting emergencies in social media based on the fusion of convolutional neural network(CNN)and recurrent neural network(RNN)was proposed.The emergent event perception model fused with CNN-RNN was constructed on the basis of defining temporal and spatial semantic issues in social media.Social messages were clustered by topic through multi-layer CNN network.Then the messages of the same topic were input into the RNN recurrent network unit in time series.When the event message spread to a certain range or duration,the RNN output the corresponding emergency topic and found the source message sent by the on-site users through the geographical location matching.The scene of emergencies was quickly perceived by portraying these source messages.The results show that compared with traditional detection methods based on semantics and social network information,the proposed method does not need to construct a complex social network model nor does it rely on semantic information retrieval.With the F 1 value reaching 0.934,emergency events can be quickly detected out.
作者 李小平 白超 LI Xiaoping;BAI Chao(School of Mechanical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《铁道学报》 CSCD 北大核心 2021年第8期97-105,共9页 Journal of the China Railway Society
基金 科技部“科技助力经济2020”重点专项(SQ2020YFF0403641)。
关键词 卷积神经网络 循环神经网络 社交媒体 突发事件 Convolutional Neural Network Recurrent Neural Network social media emergencies
  • 相关文献

参考文献9

二级参考文献96

  • 1郭乐天.互联网虚假信息的控制与网络舆情的引导[J].新闻记者,2005(2):23-26. 被引量:54
  • 2周如俊,王天琪.网络舆情:现代思想政治教育的新领域[J].新德育.思想理论教育(综合版),2005(6):12-15. 被引量:89
  • 3孙建军,柯青.不完全信息环境下的情报分析方法——情景分析法及其在情报研究中的应用[J].图书情报工作,2007,51(2):63-66. 被引量:27
  • 4Gao S, Liu Y, Wang Y, et al. Discovering Spatial Interaction Communities from Mobile Phone Data[J]. Transactions in GIS, 2013, 17(3): 463-481.
  • 5Scholz R W, Lu Y. Detection of Dynamic Activity Patterns at a Collective Level from Large-volume Trajectory Data[J]. International Journal of Geographical Information Science, 2014, 28(5): 946-963.
  • 6Huang L, Li Q, Yue Y. Activity Identification from GPS Trajectories Using Spatial Temporal Pois' Attractiveness[C]. Proceedings of the ACM Sigspatial International Workshop on Location Based Social Networks, Chicago, USA, 2010.
  • 7Seaborn C, Attanucci J, Wilson N H M. Using Smart Card Fare Payment Data to Analyze Multi-Modal Public Transport Journeys in London [C]. The 88th Transportation Research Board Annual Meeting, Washington D C, USA, 2009.
  • 8Li L, Goodchild M F, Xu B. Spatial, Temporal, and Socioeconomic Patterns in the Use of Twitter and Flickr[J]. Cartography and Geographic Information Science, 2013, 40(2): 61-77.
  • 9Tsou M H, Yang J A, Lusher D, et al. Mapping Social Activities and Concepts with Social Media (Twitter) and Web Search Engines (Yahoo and Bing): A Case Study in 2012 US Presidential Election[J]. Cartography and Geographic Information Science, 2013, 40(4): 337-348.
  • 10Signorini A, Segre A M, Polgreen P M. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the US During the Influenza a H1N1 Pandemic[J]. PloS One, 2011, 6(5): e19467.

共引文献179

同被引文献37

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部