期刊文献+

带45°肋矩形通道冷却性能及熵产特性实验研究

Experimental Study on Cooling Performance and Entropy Generation Characteristics of Rectangular Channels with 45°Ribs
下载PDF
导出
摘要 以带45°肋矩形通道为研究对象,实验测量了通道进、出口温度和压力以及壁面温度,分析了雷诺数(Re=10000~60000)和宽高比(W/H=0.25~4)对通道内冷气流动和传热性能及其引起的不可逆熵产的影响规律,对比了蒸汽冷却和空气冷却的不同。研究表明:不同雷诺数时,蒸汽冷却的传热性能较空气冷却提高了25%~33%;蒸汽冷却的综合热力性能要好于空气冷却,且最优宽高比为0.5。传热不可逆熵产占总熵产的50%以上,是不可逆熵产的主要来源。与空气冷却相比,蒸汽冷却引起更小的摩擦不可逆熵产和更大的传热不可逆熵产。 In this paper,rectangular channels with 45°ribs are taken as the research object.The inlet and outlet temperature,pressure and wall temperature of the channels are measured experimentally.The effects of Reynolds number(Re=10000-60000)and aspect ratio(W/H=0.25-4)on flow and heat transfer performance and irreversible entropy generation of the coolants are analyzed.The differences between steam cooling and air cooling are compared.The results show that the heat transfer performance of steam cooling is 25%-33%higher than that of air cooling at different Reynolds numbers;the comprehensive thermal performance of steam cooling is better than that of air cooling,and the optimal aspect ratio is 0.5.Heat transfer irreversible entropy generation accounts for more than 50%of the total entropy generation,which is the primary source of irreversible entropy generation.Compared with air cooling,steam cooling causes less friction irreversible entropy generation and greater heat transfer irreversible entropy generation.
作者 席雷 高建民 徐亮 赵振 XI Lei;GAO Jian-min;XU Liang;ZHAO Zhen(State Key Laboratory for Manufacturing Systems Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Guangdong Xi'an Jiaotong University Academy,Foshan 528300,China)
出处 《汽轮机技术》 北大核心 2021年第4期268-272,共5页 Turbine Technology
基金 广东省自然科学基金资助项目(No.2018A030313183) 国家自然科学基金资助项目(No.51876157)。
关键词 带肋通道 实验研究 冷却性能 熵产特性 ribbed channel experimental study cooling performance entropy generation characteristics
  • 相关文献

参考文献3

二级参考文献32

  • 1胡捷,苏生,刘建军,安柏涛.透平导叶闭式蒸汽冷却方案研究[J].工程热物理学报,2008,29(7):1121-1124. 被引量:2
  • 2翁史烈.燃气轮机 [M].北京:机械工业出版社,1988.
  • 3HAN J C,DUTTA S,EKKAD S.Gas turbine heat transfer and cooling technology [M].London,UK:Taylor & Francis,2000.
  • 4OBATA M,YAMAGA J,TANIGUCHI H.Heat transfer characteristics of a return-flow steam-cooled gas turbine blade [J].Experimental Thermal and Fluid Science,1989,2(3):323-332.
  • 5NOMOTO H,KONGA A,ITO S,et al.The advanced cooling technology for the 1 500 ℃ class gas turbine:steam-cooled vanes and air-cooled blades [J].ASME Journal of Engineering for Gas Turbines and Power,1997,119(3):624-632.
  • 6BOHN D,WOLFF A,WOLFF M,et al.Experimental and numerical investigation of a steam-cooled vane,GT2002-30210 [R].New York,USA:ASME,2001.
  • 7IHOR S,GREG R,GERRY M,et al.Siemens Westinghouse advanced turbine systems program final summary [J].ASME Journal of Engineering for Gas Turbines and Power,2004,126(3):524-530.
  • 8HYLTO L D,MILHEC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes,CR168015 [R].Washington DC,USA:NASA,1983.
  • 9Liu J Z,Gao J M,Gao T Y,et al.Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls[J].Applied Thermal Engineering,2013,50(1):104-111.
  • 10Shui L Q,Gao J M,Shi X J,et al.Effect of duct aspect ratio on heat transfer and friction in steam-cooled ducts with 60° angled rib turbulators[J].Experimental Thermal and Fluid Science,2013,49:123-134.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部