期刊文献+

弱矩条件下的误差估计 被引量:1

Error estimation under weak moment condition
下载PDF
导出
摘要 研究了指数损失函数的学习问题。利用相关不等式及其性质,刻画了点态样本的过度泛化误差与预测误差之间的关系。不仅将矩条件弱化到阶1+α,而且得到一个关于指数损失函数的比较定理,为进一步研究经验风险最小算法的收敛率或更复杂的函数空的正则化学习提供必要的理论准备。 The learning problem of exponential cost function is studied in the paper.The relationship between excess generalization error and prediction error of pointwise samples is characterized by using related inequalities and their properties.It not only weakens the moment condition to the order of 1+α,but also obtains a comparison theorem about exponential cost function,which provides necessary theoretical preparation for further study of convergence rate of empirical risk minimization algorithm or regularization learning of more complex function spaces.
作者 黄收友 范凯旋 黄冠利 HUANG Shou-you;FAN Kai-xuan;HUANG Guan-li(College of Mathematics and Statistics, Hubei Normal University,Huangshi 435002,China;Mathematics Department of Foundation College, Bejing Polyttechnic,Beijing 100176,China)
出处 《湖北师范大学学报(自然科学版)》 2021年第3期1-6,共6页 Journal of Hubei Normal University:Natural Science
基金 国家留学基金委项目(NO.201908420339) 湖北省教育厅科技研究项目(NO.Q20172505) 湖北师范大学课程思政教学改革研究项目(NO.2021YJSKCSZY11)。
关键词 弱矩条件 指数损失函数 误差 最小化 weak moment condition exponential cost function error minimization
  • 相关文献

参考文献1

二级参考文献19

  • 1Burba F, Ferraty F, Vieu P. k-nearest neighbour method in functional nonparametric regression. J Nonparametr Star, 2009, 21:453-469.
  • 2Ramsay J, Silverman B. Functional Data Analysis. Springer Series in Statistics. New York: Springer, 1997.
  • 3Stone C. Consistent nonparametric regression. Ann Statist, 1977, 5:595-645.
  • 4Devroye L, GySrfi L, Krzyiak A, et al. On the strong universal consistency of nearest neighbor regression function estimates. Ann Statist, 1994, 22:1371-1385.
  • 5Mack Y, Rosenblatt M. Multivariate k-nearest neighbor density estimation. J Multivariate Anal, 1979, 9:1-15.
  • 6Yi H, Pei S, Cheng H. An optimal k-nearest neighbor for density estimation. Statist Probab Lett, 2012, 82:1786-1791.
  • 7Steele B. Exact bootstrap k-nearest neighbor learners. Mach Learn, 2009, 74:235-255.
  • 8Evans D. A law of large numbers for nearest neighbour statistics. Proc R Soc Lond Ser A Math Phys Eng Sci, 2008, 464:3175-3192.
  • 9Gyorfi L, Kohler M, Krzyzak A, et al. A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. New York: Springer, 2002.
  • 10Kulkarni S, Posner S. Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans Inform Theory, 1995, 41:1028-1039.

共引文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部