摘要
光与物质之间的相互作用是自然界中最基本的物质相互作用之一,这种动力学的完全可视化需要时间上的阿秒分辨率和空间上的原子级分辨率。超短相干电子源是实现这一目标的重要方法。本文介绍了利用各种光场如射频、太赫兹、可见光来产生、相空间调控甚至表征这种超短相干的高品质电子源的重要进展,并主要总结了其在四维超快电子显微镜方面的技术突破,为“阿秒显微镜”的建立开辟了道路,使对电子运动成像成为可能,最后对超快电子研究的发展进行了展望。
The interaction between light and matter is one of the heart interactions in nature.The complete visualization of this kind of dynamics requires attosecond resolution in time and atomic resolution in space.Ultrashort and coherent electron pulses are central to achieve this goal.This review surveys the important efforts aimed at generation,phase-space control and characterization of ultrashort electron pulses using various optical fields such as microwave,terahertz radiation and visible light,and mainly summarizes its key breakthrough in four-dimensional ultrafast electron microscopy,which opens up the way for the establishment of“attomicroscopy”to allow the imaging of electron motion in the act.Finally,the development prospects of ultrafast electron research is presented.
作者
田野
周楚亮
付学文
纪少政
冷雨欣
李儒新
TIAN Ye;ZHOU Chuliang;FU Xuewen;JI Shaozheng;LENG Yuxin;LI Ruxin(State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Ultrafast Electron Microscopy Laboratory,the MOE Key Laboratory of Weak-Light Nonlinear Photonics,School of Physics,Nankai University,Tianjin 300071,China)
出处
《光子学报》
EI
CAS
CSCD
北大核心
2021年第8期16-43,共28页
Acta Photonica Sinica
基金
国家自然科学基金(Nos.11874372,11922412,11974191)
中国科学院基础前沿科学研究计划(No.ZDBS‒LY‒SLH018)
中国科学院青年促进会项目,中科院海外人才引进计划,国家重点研发计划(No.2020YFA0309300)
中央高校基本科研业务费专项资金,天津市自然科学基金(Nos.20JCZDJC00560,20JCJQJC00210)。
关键词
电子光学
相干电子源
电子光场调控
超短电子脉冲
时间分辨成像与显微
超快电子显微成像
Electron optics
Coherent electron sources
Optical field control of electron pulses
Ultrashort electron pulses
Time-resolved image and diffraction
Ultrafast electron microscopy