期刊文献+

基于Adaboost算法的环抛机盘面钝化程度分类 被引量:2

Passivation classification of a continuous polishing machine disk based on the Adaboost algorithm
原文传递
导出
摘要 针对环抛机盘面钝化程度难以识别的问题,该文提出了一种基于灰度共生矩阵(gray-level co-occurrence matrix,GLCM)和Adaboost分类器的分类方法。首先获取盘面状态图像,利用GLCM算法对环抛机盘面纹理图像进行特征提取,将GLCM的4个二阶统计量输入至Adaboost分类器进行训练,得到可以识别盘面未钝化和已钝化图像的图像分类器。经过试验数据分析,确定了GLCM用于环抛机盘面钝化程度分类的最优参数为点对间距离d=11、灰度级数k=16,其分类正确率可达98.3%,较LBP算法分类正确率升高9.5%,较PNN算法分类正确率升高2.08%。 This paper describes a classification method based on a gray-level co-occurrence matrix(GLCM) and the Adaboost algorithm for monitoring passivation of a continuously polishing machine disk. The texture image features of a continuously polishing machine disk are derived from a GLCM operator of a disk photograph. Four second-order statistics of the GLCM are input into a Adaboost classifier for training so that the classifier can then identify if the disk has been passivated. Tests show that the classification accuracy is best when the GLCM point-to-point distance is 11 and the GLCM gray level is 16. The image classification accuracy is 98.3%, which is 9.5% higher than that of the LBP algorithm and 2.08% higher than that of the PNN algorithm.
作者 李泽林 刘成颖 LI Zelin;LIU Chengying(Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control,Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China)
出处 《清华大学学报(自然科学版)》 CSCD 北大核心 2021年第9期986-993,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家科技重大专项课题(2017ZX04022001-102)。
关键词 环抛加工 钝化 灰度共生矩阵(GLCM) ADABOOST算法 continuous polishing passivation gray-level co-occurrence matrix(GLCM) Adaboost algorithm
  • 相关文献

参考文献3

二级参考文献22

  • 1Mannan M A, et al. Application of image and sound analysis techniques to monitor the condition of cutting tools. [ J ]. Pattern Recognition Letter, 2000,21:969 - 979.
  • 2Kassim A A, et al. Texture analysis using fractals for tool wear monitoring [A]. Image Processing Praceedings, 2002 International Conference on Publication [C], 2002, ( 3 ) : 105 - 108.
  • 3Kashiwagi H, Nagayama Y, Shibuta K. Estimation of tool wear by use of image processing of cutting dust [ A ]. SICE Annual Conference[ C] , 2003.
  • 4Castejon M, Alegre E, Barreiro J, et al. On-line tool wear monitoring using geometric descriptors from digital images[J]. Inter. national Journal of Machine Tools & Manufacture , 2007, 47 : 1847 - 1853.
  • 5Li P Y, Hao C Y, Zhu S W. Machine tools wear condition detection based on wavelet packet[ A]. Proceedings of the Sixth In. ternational Conference on Machine Learning and Cybernetics[ C], Hong Kong, 2007.
  • 6Berthiaux H, Mosorov V, Tomczak L. Principal component analysis for charactefising homogeneity in powder mixing using image processing techniques[ J]. Chemical Engineering and Processing, 2006,45:397 - 403.
  • 7Bonifazzi C, et al. Principal component analysis of scintimammographic images[J]. Physica Medica, 2006,21 (10) :91 - 93.
  • 8Huang J. Multi-way methods in image analysis: relationship and application [ J ]. Chemometrics and Intelligent Laboratory System, 2003,66 : 141 - 158.
  • 9Chatterjee A. An introduction to the proper orthogonal decomposition. [J]. Current Science, 2000,78 (7) :808-817.
  • 10Luis Malagon-Borja, Fuentes O, Object detection using image reconstruction with PCA [ J ]. Image and Vision Computing, 2009,27:2 - 9.

共引文献443

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部