期刊文献+

银同位素地球化学综述 被引量:1

A Review of Silver Isotope Geochemistry
下载PDF
导出
摘要 银(Ag)是生活中常见的贵金属元素。Ag有2个稳定同位素107Ag和109Ag。随着多接收电感耦合等离子体质谱仪(MC-ICP-MS)的应用,国内外对银同位素体系开展了一系列研究。Ag在矿床中常与Au元素共生,且Pd-Ag同位素体系可作为早期太阳系演化计时器,因此在天体化学、环境科学、矿床地球化学等领域都具有广泛应用。本文首先介绍了银同位素的地球化学特点及其研究历史,对前人工作进行了系统总结,包括化学分离流程、质谱测定及质量分馏校正方法、储库同位素组成,评述了银同位素在地球科学及交叉学科中的应用。最后总结了银同位素地球化学研究的难点,展望了银同位素储库组成和分馏机理研究。 Silver(Ag) is a common noble metal element widely used in daily life. It has two stable isotopes, 107Ag and 109Ag. With the development of multiple-collector inductively coupled plasma mass spectrometry(MC-ICP-MS), research of Ag isotopes has been increasingly carried out. Because Ag often coexists with gold in ore deposits and because the Pd-Ag chronometer is often used in timing the early solar system, Ag isotopes are widely studied in cosmochemistry, environmental science, deposit geochemistry, and other research fields. In this paper, we summarize recent research progresses on analytical methods of Ag isotopes, including chemical separation, mass spectrometry analysis, reservoir determination, and on applications of Ag isotopes in geoscience and interdisciplinary fields. Finally, we emphasize the challenges in Ag isotope studies and propose future studies on determining isotopic compositions of Ag reservoirs and on understanding fractionation mechanisms of Ag isotopes.
作者 方远 康晋霆 黄方 FANG Yuan;KANG Jin-ting;HUANG Fang(CAS Key Laboratory of Crust-Mantle Material and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;CAS Center for Excellence in Comparative Planetology,Hefei 230026,China)
出处 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2021年第4期974-983,共10页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 国家自然科学基金重点项目(41630206)。
关键词 银同位素 化学分离 质谱测定 同位素分馏 储库 silver isotopes chemical purification MC-ICPMS analysis isotope fractionation reservoir
  • 相关文献

参考文献3

二级参考文献124

  • 1梁莉莉,刘丛强,王中良,宋柳霆.铜锌同位素方法在环境地球化学研究中的应用[J].地球与环境,2006,34(1):81-89. 被引量:11
  • 2Seidl M, Huang V, Mouchel J M. Toxicity of combined sew- er overflows on river phytoplankton: The role of heavy met- als[J]. Environmental Pollution, 1998, 101(1): 107-116.
  • 3Graedel T, Beers D, Bertram M, et al. The multilevel cycle of anthropogenic zinc [J]. Journal of Industrial Ecology, 2005, 9(3): 67-90.
  • 4Albarede F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry, 2004, 55 (1): 409-427.
  • 5Blix R, Ubisch H V, Wickman F E. A search for variations in the relative abundance of the zinc isotopes in nature[J]. Geochimica et Cosmochimica Acta, 1957, 11: 162-164.
  • 6Rosman K J R. A survey of the isotopic and elemental abun- dance of zinc[J]. Geochimica et Cosmochimica Acta, 1972, 36: 801-819.
  • 7Archer C, Vance D. Mass discrimination correction in multi- pie-collector plasma source mass spectrometry: An example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5):656-665.
  • 8Marechal C N, Telouk P, Albarede F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156 (1) : 251- 273.
  • 9Marechal C N, Nicolas E, Douehet C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochem-istry, Geophysics, Geosystems, 2000(5): 1-15.
  • 10Marechal C, Albarade F. Ion-exchange fractionation of cop- per and zinc isotopes[J]. Geochimica et Cosmochimica Acta, 2002, 66(9): 1499-1509.

共引文献18

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部