摘要
蔬菜水果图像的分类研究在智慧农业领域具有重要的地位。针对蔬菜水果的实时高精度的分类问题,提出了一种基于LBP的粒子群优化混合核函数ELM模型(LBP-PSO-KELM)的分类方法,首先通过LBP等价变换提取蔬菜水果图像的纹理特征,然后将多项式核函数和高斯核函数加权成的复杂核函数(KELM)引入极限学习机中,并使用粒子群算法(PSO)对KELM中的核系数进行自适应选取,同时对引入的其他3个关键参数寻找最优值,获得最优模型。通过对Fruits-360数据集进行分类实验,结果表明,LBP-PSO-KELM在此数据集的分类准确率达到98.865 8%,平均分类时间为3.7ms,比单核ELM以及传统的分类方法分类准确率更高,模型计算时间短,且对硬件设备要求低,满足了智慧农业的实际需求。
The classification and recognition of vegetable and fruit images play a significant role in the domain of smart agriculture. To work out the issue of real-time high-accuracy classification of vegetables and fruits, this paper proposes a particle swarm optimization based on LBP mixed kernel function ELM model(LBP-PSO-KELM) classification method, first by LBP equivalent transform to extract the texture characteristics of fruits and vegetables;and then the polynomial kernel function and gaussian kernel function weighted as complex nuclear functions(KELM) are then introduced into the limit learning machine;the kernel coefficients in the KELM are adaptively selected using the particle swarm algorithm(PSO);at the same time find the optimal value for the other three introduced key parameters and obtain the optimal model.Through the classification experiment of Fruits-360 data set, the results show that the classification accuracy of LBP-PSO-KELM in this data set reaches 98.3658%. Compared with mononuclear ELM and traditional identification methods, the classification precision is higher. The model requires only a short computation period and does not require high speed computer hardware, which satisfies the practical needs of smart agriculture.
作者
许学斌
赵雨晴
路龙宾
张佳达
XU Xuebin;ZHAO Yuqing;LU Longbin;ZHANG Jiada(School of Computer Science and Technology,Xi'an University of Posts&Telecommunications,Xi'an 710121,China;Shaanxi Key Laboratory of Network Data ANalysis and Intelligent Processing,Xi'an University of Posts&Telecommunications,Xi'an 710121,China)
出处
《机械设计与研究》
CSCD
北大核心
2021年第4期15-20,25,共7页
Machine Design And Research
基金
国家自然科学基金资助项目(61673316)
陕西省教育厅资助项目(16JK1697)
陕西省重点研发计划项目(2017GY-071)
陕西省技术创新引导项目(2017XT-005)
咸阳市科技计划项目(2017K01-25-3)
西安邮电大学研究生创新基金资助项目(CXJJLY2019079)。