期刊文献+

由三组谱数据重构一类伪Jacobi矩阵

On the reconstruction of a pseudo-Jacobi matrix from three spectra
下载PDF
导出
摘要 研究一类伪Jacobi矩阵的逆特征值问题.首先,研究此类伪Jacobi矩阵的谱性质,分两种情况讨论了此类矩阵的存在性定理,并求出相应情况下解的个数;其次,提出了一种由三组谱数据重构矩阵的算法;最后,由具体的数值实例来验证该算法的有效性. In this paper,a class of inverse eigenvalue problems for pseudo-Jacobi matrix is studied.Firstly,we investigated the spectral properties of such pseudo-Jacobi matrices and discussed the existence of such matrices in two cases,and described the number of solutions.Then we provided an algorithm for matrix reconstruction based on three spectra.Finally,a numerical experiment was given to verify the effectiveness of the algorithm.
作者 雷英杰 郭雪娟 LEI Yingjie;GUO Xuejuan(School of Science, North University of China, Taiyuan 030051, China)
机构地区 中北大学理学院
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2021年第5期28-36,共9页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(51675491)。
关键词 伪Jacobi矩阵 逆特征值问题 顺序主子阵 谱数据 pseudo-Jacobi matrix inverse eigenvalue problem leading principle submatrix spectral data
  • 相关文献

参考文献1

二级参考文献12

  • 1H Hochstadt, On some inverse problems in matrix theorey, Arch Math , 18 (1967), 201-207.
  • 2D Boley and G H Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems, 3(1987), 595-622.
  • 3C de Boor and G H Golub, The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data, Linear Algebra and Its Applications, 21 (1978), 245-260.
  • 4W B Gragg and W J Harrod, The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data, Numer Math , 44 (1984), 317-335.
  • 5Er-Xiong Jiang, Symmetric Matrix Computation, Shanghai Science and Technology Press, 1984(in Chinese).
  • 6Er-Xiong Jiang, An Extension of Roots Separate Theorem of Unreduced Symmetric Tridiagonal Matrix, Numerical Mathematics-A Journal of Chinese Universities, 21:4 (1999), 305-310.
  • 7Erxiong Jiang, An Extension of the Roots Separation Theorem, Annals of Operations Research,103 (2001), 315-327.
  • 8C C Paige, The Computation of Eigenvalues and Eigenvectors of very large sparse Matrices,Ph.D.Thesis, Univ.of London, 1971.
  • 9B N Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall,Inc , Englewood Cliffs, N J. 07632,1980.
  • 10A Palston, H S Wilf, Mathematical Methods for Digital Computers, Vol.II, John Wiley & Sons Inc , 1968.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部