摘要
聚苯胺(PANI)在连续充放电后出现结构塌陷,导致其循环稳定性变差的问题。采用原位聚合技术,使苯胺在生物质碳(MnOC)材料表面发生原位聚合,控制PANI颗粒在MnOC表面有序生长,制备的PANI/MnOC复合电极材料同时具备MnOC双电层电容和PANI法拉第赝电容的特征。对材料的分析测试结果表明,PANI/MnOC复合电极材料由微孔、介孔及大孔的多孔网络构成,有利于电荷的存储及传输。由电化学性能测试结果可知,PANI/MnOC复合电极材料相比于PANI,电流密度为1.0 A/g时比电容为385.0 F/g,高于PANI(158.7 F/g)。在2.0 A/g电流密度下,进行5000次连续循环充放电后,复合电极材料的电容保持率达到82.2%。
Polyaniline(PANI)structure will collapse after continuous charging and discharging,leading to the problem of poor cyclic stability.In this paper,aniline is polymerized in situ on the surface of biomass carbon(MnOC)material by in situ polymerization technology,and PANI particles are controlled to grow orderly on the surface of MnOC.The prepared PANI/MnOC composite electrode material has the characteristics of both double-layer capacitance and Faraday pseudocapacitance.The analysis and test results show that the PANI/MnOC composite electrode material consists of a porous network of micropores,mesoporous and macropores,which is conducive to charge storage and transmission.By measuring its electrochemical performance,it is found that compared with pure PANI,the specific capacitance of PANI/MnOC composite electrode material is 385.0 F/g when the current density is 1.0 A/g,which is higher than the specific capacitance of pure PANI.When the current density is 2.0 A/g and the current density is 5000 cycles continuously,the capacitance retention rate of composite electrode material reaches 82.2%.
作者
李海瑞
李智芳
纪帅
李跃宇
杨健
杨长龙
LI Hairui;LI Zhifang;JI Shuai;LI Yueyu;YANG Jian;Yang Changlong(School of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar 161006,China;School of Materials Science and Engineering,Qiqihar University,Qiqihar 161006,China;Heilongjiang Key Laboratory of Polymer Matrix Composites,Qiqihar 161006,China)
出处
《功能材料》
CAS
CSCD
北大核心
2021年第8期8118-8124,共7页
Journal of Functional Materials
基金
国家自然科学基金资助项目(51708309)
黑龙江省教育厅基本业务专项基金资助项目(135509302)
齐齐哈尔大学创新科研基金资助项目(YJSCX2020013)。
关键词
聚苯胺
生物质碳
电极材料
原位聚合
电化学性能
polyaniline
biomass carbon
electrode material
in situ polymerization
composite electrode material