期刊文献+

奇异积分算子在加权调幅空间上的有界性

Mapping Properties of Singular Integral Operators on Weighted Modulation Spaces
下载PDF
导出
摘要 调幅空间是调和分析中一类重要的函数空间,奇异积分算子是调和分析中的常见且重要的算子.为进一步研究此类算子在加权调幅空间上的有界性,文章主要利用函数分解和振荡积分估计证明某类沿曲线及曲面的奇异积分算子在加权调幅空间M_(s)^(p,q)(R^(2))上的有界性,其中0<p<1,0<q≤∞且s∈R.得到的主要结果对已有的有界性结论进行一定的补充,同时蕴含调幅空间比Lebesgue空间更适合研究奇异积分算子的映射性质. Modulation spaces are an important function spaces in harmonic analysis,and singular integral op⁃erators are common and important operators in harmonic analysis.In order to further study the boundedness of such operators on weighted modulation spaces,the paper mainly uses function decomposition and oscillato⁃ry integral estimation to prove the mapping properties of certain singular integral operators along curves and surfaces on weighted modulation spaces M_(s)^(p,q)(R^(2)),where 0<p<1,0<q≤∞and s∈R.The main results of this article supplement the existing boundedness conclusions to some extent,and meanwhile imply that modu⁃lation spaces are more suitable for studying the mapping properties of singular integral operators than the Lebesgue spaces.
作者 刘慧慧 唐剑 LIU Huihui;TANG Jian(School of Mathematics and Statistics,Fuyang Normal University,236037,Fuyang Anhui,China)
出处 《淮北师范大学学报(自然科学版)》 CAS 2021年第3期12-17,共6页 Journal of Huaibei Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11801081)。
关键词 调幅空间 奇异积分算子 Wiener共合空间 modulation spaces singular integral operators Wiener amalgam spaces
  • 相关文献

参考文献2

二级参考文献33

  • 1Kobayashi M., Dual of modulation spaces, J. Funct. Spaces Appl., 2007, 5: 1-8.
  • 2Laghi N., Lyall N., Strongly singular integrals along curves, Pacific J. Math., 2007 233: 403-415.
  • 3Feichtinger H. G., Banach Spaces of Distributions of Wiener's Type and Interpolation, in: P. Butzer, B. Sz. Nagy and E. Gorlich (Eds), Proc. Conf. Oberwolfach, Functional Analysis and Approximation, August 1980, Ins. SeE Num. Math., Vol. 69, Basel, Boston, Stuuugart: Birkhauser-Verlag, 1981, 153 165.
  • 4Feichtinger H. G., Modulation Spaces on Locally Compact Abelian Groups, Technical Report, Vienna: University of Vienna, 1983.
  • 5Kobayashi M., Modulation spaces M^p,q for 0 < p, q ≤∞, J. Function Spaces. Appl., 2006, 4: 329-341.
  • 6Benyi A., Grafakos L., Grochenig K., Okoudjou K. A., A class of Fourier multipliers for modulation spaces, Appl. Comput. Harmon. Anal., 2005, 19: 131-139.
  • 7Benyi A., Grochenig K., Okoudjou K. A., Rogers L. G., Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal., 2007, 246: 366-384.
  • 8Benyi A., Okoudjou K. A., Local well-posedness of nonlinear dispersive equations on modulation spaces, Preprint, arXiv: 0704.0833v1.
  • 9Cordero E., Nicola F., Some new Strichartz estimates for the SchrSdinger equation, arXiv: 0707.4584.
  • 10Feichtinger H. G., Narimani G., Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal., 2006, 21:349 359.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部