期刊文献+

一种基于K-shell影响力最大化的路径择优计算迁移算法 被引量:2

A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization
下载PDF
导出
摘要 在移动边缘计算网络中,高效的计算迁移算法是移动边缘计算的重要问题之一.为了提高计算迁移算法性能,应用同类问题的相互转换性和最大化影响力模型,利用K-shell算法对边缘服务器进行等级划分,考虑边缘服务器负载过重问题,构建路径重叠(path overlap,PO)算法,引入通信质量、交互强度、列队处理能力等指标进行边缘服务器路径优化,将优化计算任务迁移路径问题转化为社会网络影响力最大化问题求解.基于K-shell影响力最大化思想,联合优化改进贪心与启发式算法,提出一种K-shell影响力最大化计算迁移(K-shell influence maximization computation offloading,Ks-IMCO)算法,求解计算迁移问题.与随机分配(random allocation,RA)算法、支持路径切换选择的(path selection with handovers,PSwH)算法在不同实验场景下对比分析,Ks-IMCO算法的能耗、延迟等明显提升,能有效提高边缘计算网络计算迁移的效率. As edge computing and cloud computing develop in a rapid speed and integrate with each other,resources and services gradually offload from the core network to the edge of the network.Efficient computation offloading algorithm is one of the most important problems in mobile edge computing networks.In order to improve the performance of the algorithm,a computation offloading algorithm with path selection based on K-shell influence maximization is proposed.The K-shell method is used to grade the edge servers by applying the convertibility and maximizing influence model of similar problems.Otherwise,considering the problem of excessive load of edge servers,path overlap(PO)algorithm is constructed,and indicators such as the communication quality,interaction strength,and queue processing ability,etc.are introduced to optimize the performance of the algorithm.The offloading path problem of the optimization calculation task is transformed into the social network impact maximization problem.Based on the idea of maximizing K-shell influence,greedy and heuristic algorithms are optimized and improved,and the K-shell influence maximization computation offloading(Ks-IMCO)algorithm is proposed to solve the problem of computational offloading.Through the comparative analysis of Ks-IMCO and random allocation(RA),path selection with handovers(PSwH)algorithm experiments,the energy consumption and delay of Ks-IMCO algorithm have been significantly improved,which can effectively improve the efficiency of edge computing network computing offloading.
作者 乐光学 陈光鲁 卢敏 杨晓慧 刘建华 黄淳岚 杨忠明 Yue Guangxue;Chen Guanglu;Lu Min;Yang Xiaohui;Liu Jianhua;Huang Chunlan;Yang Zhongming(College of Information Science and Engineering,Jiaxing University,Jiaxing,Zhejiang 314001;State Grid Jibei Dacheng Power Supply Co.,Ltd,Langfang,Hebei 065000;College of Science,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000)
出处 《计算机研究与发展》 EI CSCD 北大核心 2021年第9期2025-2039,共15页 Journal of Computer Research and Development
基金 国家自然科学基金项目(U19B2015) 浙江省“鲲鹏行动”计划支持项目。
关键词 移动边缘计算 计算迁移 影响力最大化 路径选择 K-SHELL mobile edge computing computation offloading influence maximization path selection K-shell
  • 相关文献

参考文献4

二级参考文献32

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146.
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429.
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207.
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402.
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038.
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97.
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390.
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147.

共引文献441

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部