期刊文献+

移动社交网络中大学生用户行为特征分析与实证研究 被引量:1

Analysis and Empirical Behavioral Characteristics of College Students in Mobile Social Networks
下载PDF
导出
摘要 为更客观、全面地了解目前大学生用户的行为特征情况,本文从特定大学生用户的关注和被关注关系出发爬取新浪微博大学生用户数据并存储,利用Xpath库对数据进行解析得到大学生用户的微博地址、微博名称、用户性别、用户所在地、关注和被关注数量、粉丝数量、微博数量等信息,并对这些数据信息进行可视化分析从而得到大学生用户的行为特征。新浪微博作为国内最大、最有价值的移动社交平台,对其大学生用户群体进行研究分析将有助于人们更全面地理解大学生日常网络行为,有利于移动社交平台及时掌握大学生用户的需求,为用户提供更优质的服务,稳定平台客户群。 In order to understand the behavior characteristics of college students users more objectively and comprehensively,this paper climbs and stores Sina Weibo university student user data from the concern and concern relationship of specific college students users,uses xpath library to analyze the data to obtain the information of college students'micro-blogging address,MicroBlog name,user gender,user location,number of followers and followers,number of fans,number of MicroBlogs,etc.,and makes a visual analysis of the data information to obtain the behavior characteristics of college students.Sina MicroBlog,as the largest and most valuable mobile social platform in China,will help people to understand the daily network behavior of college students more comprehensively,help mobile social platform to grasp the needs of college students in a timely manner,provide users with better service and stabilize the platform customer base.
作者 张浩飞 袁梦宇 胡振坤 ZHANG Haofei;YUAN Mengyu;HU Zhenkun(School of Information and Engineering,Henan Institute of Science and Technology,Xinxiang,Henan Province,453003 China)
出处 《科技创新导报》 2021年第14期140-145,共6页 Science and Technology Innovation Herald
基金 2020年河南省大学生创新创业计划项目(项目编号:S202010467018)。
关键词 移动社交网络 大学生用户 特征分析 数据可视化分析 Mobile social network College users Feature analysis Data visualization analysis
  • 相关文献

参考文献6

二级参考文献57

  • 1Liben-Nowell D, Kleinberg J.The link-prediction prob- lem for social networks[J].Journal of the American Society for Information Science and Technology, 2007, 58 (7) : 1019-1031.
  • 2Backstrom L, Leskovec J.Supervised random walks:pre- dicting and recommending links in social networks[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining,2011:635-644.
  • 3Tan C, Tang J, Sun J, et al.Social action tracking via noise tolerant time-varying factor graphs[C]//Proceed- ings of the 16th ACM SIGKDD International Confer- ence on Knowledge Discovery and Data Mining,2010: 1049-1058.
  • 4Taskar B, Wong M F, Abbeel P, et al.Link prediction in relational data[C]//Advances in Neural Information Pro- cessing Systems, 2003.
  • 5Zheleva E, Getoor L, Golbeck J, et al.Using friendship ties and family circles for link prediction[M]//Advances in social network mining and analysis.Heidelberg, Ber- lin: Springer, 2010 : 97-113.
  • 6Singla P, Richardson M.Yes,there is a correlation : -from social networks to personal behavior on the web[C]// Proceedings of the 17th International Conference on World Wide Web,2008 : 655-664.
  • 7Crandall D J, Backstrom L, Cosley D, et al.Inferring social ties from geographic coincidences[J].Proceedings of the National Academy of Sciences, 2010,107(52) : 22436-22441.
  • 8Crandall D, Cosley D, Huttenlocher D, et al.Feedback effects between similarity and social influence in online communities[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008 : 160-168.
  • 9Anagnostopoulos A,Kumar R,Mahdian M.Influence and correlation in social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining,2008:7-15.
  • 10Aral S, Muchnik L, Sundararajan A.Distinguishing influence- based contagion from homophily-driven diffusion in dynamic networks[J].Proceedings of the National Academy of Sciences, 2009,106(51 ) : 21544-21549.

共引文献47

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部