期刊文献+

数据挖掘技术在风电机组发电机轴承故障预警中的应用 被引量:3

Application of data mining technology in early warning of wind turbine generator bearing failure
原文传递
导出
摘要 随着风电装机规模的扩大和风电场投产时间的增加,风电机组的故障呈现多样化和复杂化。为提高风电场检修及故障消除的工作效率,降低运维成本,实现故障状态检修,利用风机SCADA运行数据设计,针对风机发电机轴承的故障预警算法,对发电机轴承预警,为运维人员开展故障消除与检修提供技术支撑。 With the expansion of the scale of wind power installations and the increase in the time for wind farms to be put into operation, the faults of wind turbines are showing a trend of diversification and complexity. In order to improve the efficiency of wind farm maintenance and fault elimination, reduce operation and maintenance costs, and realize the transition of faults overhaul, this paper uses the SCADA operating data of the wind turbine to design a fault warning algorithm for the bearing of the wind turbine generator, and provides technical support for the operation and maintenance personnel to carry out fault elimination and maintenance.
作者 邢涛 XING Tao
出处 《节能》 2021年第7期43-45,共3页 Energy Conservation
关键词 发电机轴承 状态检修 故障预警 wind power generator bearing condition maintenance fault warning
  • 相关文献

参考文献5

二级参考文献37

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2佟金萍,王慧敏,仇蕾,朱九龙.数理统计方法在复合系统诊断预警中的综合应用[J].数理统计与管理,2005,24(6):6-11. 被引量:1
  • 3DEMRIZ A, BENNETT K P, EMBRECHTS M J. Semi-supervised clustering using genetic algorithm [ C ]//Proc of the Intelligent Engineering Systems through Artificial Neural Networks. New York:ASME Press, 1999:809-814.
  • 4DAVIDSON I, BASU S. Survey of clustering with instance level constraints[ J]. ACM Trans on Knowledge Discovery from Data, 2007,W(x,z) :1-41.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.
  • 6KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm algorithm [ C ]//Proc of IEEE Conference on Systems, Man, and Cybernetics. 1997:4104-4108.
  • 7LIU Yu, QIN Zheng, XU Zeng-lin, et al. Feature selection with particle swarms, computational and information science[ C ]//Proc of the 1st International Symposium on CIS. 2004:425-430.
  • 8WANG Ling, YU Jin-shou. Fault feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis[ C]//Proc of ICNC. 2005:832-840.
  • 9De FALCO I, CIOPPA D A, TARANTINO E. Facing classification problems with particle swarm optimization [ J]. Applied Soft Computing, 2007,7 (3) :652-658.
  • 10HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.

共引文献121

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部