期刊文献+

Modeling of a SiGeSn quantum well laser

原文传递
导出
摘要 We present comprehensive modeling of a Si GeSn multi-quantum well laser that has been previously experimentally shown to feature an order of magnitude reduction in the optical pump threshold compared to bulk lasers.We combine experimental material data obtained over the last few years with k·p theory to adapt transport,optical gain,and optical loss models to this material system (drift-diffusion,thermionic emission,gain calculations,free carrier absorption,and intervalence band absorption). Good consistency is obtained with experimental data,and the main mechanisms limiting the laser performance are discussed. In particular,modeling results indicate a low non-radiative lifetime,in the 100 ps range for the investigated material stack,and lower than expectedΓ-L energy separation and/or carrier confinement to play a dominant role in the device properties. Moreover,they further indicate that this laser emits in transverse magnetic polarization at higher temperatures due to lower intervalence band absorption losses. To the best of our knowledge,this is the first comprehensive modeling of experimentally realized Si GeSn lasers,taking the wealth of experimental material data accumulated over the past years into account. The methods described in this paper pave the way to predictive modeling of new (Si)GeSn laser device concepts.
出处 《Photonics Research》 SCIE EI CAS CSCD 2021年第7期1234-1254,共21页 光子学研究(英文版)
基金 Deutsche Forschungsgemeinschaft (299480227)。
关键词 LASER POLARIZATION PUMP
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部