期刊文献+

带判别性局部结构约束的多分辨率字典学习算法及人脸识别研究 被引量:3

Multi-Resolution Dictionary Learning Algorithm with Discriminative Locality Constraints for Face Recognition
原文传递
导出
摘要 字典学习是图像表示的一种有效手段且在图像识别任务中具有出色的表现。大部分传统字典学习算法在多分辨率人脸图像识别中存在不同分辨率下字典判别性不强的问题。为了解决这一问题,提出一种新的带判别性局部结构约束的多分辨率字典学习算法。首先,通过分析字典原子与轮廓向量之间的一一对应关系,采用字典原子的局部几何结构,分别构造了轮廓向量的类内局部约束项与类间局部约束项;然后将这两个约束项统一在同一个正则项中,并将其增加到字典学习目标函数中进行联合优化,从而实现判别性局部几何结构的编码。该算法促使类内编码系数保持相似的局部一致性,而且能有效提高类间编码系数的局部结构的差异性。最后,在多个多分辨率人脸图像数据集上验证了本文算法的有效性,实验结果表明,与同类字典学习算法相比,本文学习的多分辨率字典能保持训练样本中的判别性局部结构,在不同分辨率的人脸图像上获得了更好的识别性能。 Although dictionary learning has shown to be a powerful tool for image representation and has achieved satisfactory results in various image recognition tasks.Most traditional dictionary learning algorithms have been restricted to multi-resolution face recognition tasks mainly due to the poor discriminability of the dictionary.To solve this problem,we propose a novel multi-resolution dictionary learning algorithm with discriminative locality constraints(MDLDLC)in this paper.Based on the one-to-one mapping between each dictionary atom and the corresponding profile vector,we design two local constraints on profile vectors,referred to as intra-class and interclass local constraints,by utilizing the local geometric structure of the dictionary atoms.Meanwhile,the two constraints are formulated into a unified regularization term and incorporated into the objective function of the dictionary learning model to optimize for encoding the discriminative locality of input data jointly.The proposed MDLDLC algorithm encourages high intra-class local consistency and inter-class local separation in the code space of multi-resolution images.Finally,extensive experiments conducted on different multi-resolution face image datasets demonstrate the effectiveness of the proposed MDLDLC algorithm.The results show that the proposed MDLDLC algorithm can learn the multi-resolution dictionaries with discriminative locality,preserving and achieving promising recognition performance compared with other state-of-the-art dictionary learning algorithms.
作者 曾淑英 汤红忠 邓仕俊 张东波 Zeng Shuying;Tang Hongzhong;Deng Shijun;Zhang Dongbo(College of Automation and Electronic Information,Xiangtan University,Xiangtan,Hunan 411105,China;Hunan Provincial Key Laboratory of Intelligent Information Processing and Application,Hunan 421002,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第14期438-449,共12页 Laser & Optoelectronics Progress
基金 国家自然科学基金区域创新发展联合基金(U19A2083) 湖南省战略性新兴产业科技攻关与重大成果转化项目(2019GK4007) 湖南省自然科学基金(2020JJ4588,2020JJ4090)。
关键词 机器视觉 字典学习 判别性局部结构约束 多分辨率字典 人脸识别 machine vision dictionary learning discriminative locality constraints multi-resolution dictionary face recognition
  • 相关文献

参考文献4

二级参考文献46

  • 1A F Bobick, J W Davis. The recognition of human movement using temporal templates [J]. IEEE Trans Pattern Anal Mach Intell, 2001, 23(3): 257-267.
  • 2T Xiang, S Gong. Beyond tracking: modelling activity and understanding behaviour [J]. International Journal of Computer Vision, 2006, 67(1): 21-51.
  • 3V Chandrashekhar, K Venkatesh. Action energy images for reliable human action recognition [C]. New Delhi: Proc of Asian Symp on Information Display, 2006. 484-487.
  • 4L Wang, D Suter. Informative shape representations for human ction recognition [C]. Hong Kong: 18th International Conference on Pattern Recognition, 2006. 1266-1269.
  • 5D Weinland, R Ronfard, E Boyer. Free viewpoint action recognition using motion history volumes [J]. Computer Vision and Image Understanding, 2007, 104(2-3): 249-257.
  • 6J X Cai, G C Feng, X Tang. Human action recognition using oriented holistic feature [C]. Melbourne: 20th IEEE International Conference on Image Processing, 2013. 2420-2424.
  • 7C Niebles, H C Wang, F F Li. Unsupervised learning of human action categories using spatial-temporal words [J]. International Journal of Computer Vision, 2008, 79(3): 299-318.
  • 8J G Liu, S Ali, M Shah. Recognizing human actions using multiple features [C]. Anchorage: Computer Vision and Pattern Recognition, 2008. 1-8.
  • 9K Alexander, M Marcin, S Cordelia. A spatio-temporal descriptor based on 3D-gradients [C]. Leeds: British Machine Vision Conference, 2008. 995-1004.
  • 10P Scovanner, A Saad, S Mubarak. A 3-dimensional sift descriptor and its application to action recognition [C]. Beijing: Proceedings of the 15th international conference on Multimedia, 2007. 357-360.

共引文献62

同被引文献39

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部