期刊文献+

应然·实然·必然:算法推荐时代的主流意识形态建设理路 被引量:2

下载PDF
导出
摘要 算法推荐作为一种新型的信息分发技术,已经被广泛应用于信息分发领域。算法推荐时代的来临,开启了主流意识形态建设的新时代,为主流意识形态治理建设提供了诸多新机遇。同时,算法推荐技术也给主流意识形态带来了挑战,一方面是算法推荐易造成"信息茧房"效应,加大主流意识形态认同难度;另一方面,算法推荐造成"专业把关人"缺失,弱化主流意识形态内容供给。为此,主流意识形态必须主动出击,从顶层设计和算法推荐技术两个方面入手,规避算法推荐对主流意识形态的不利影响,更好地让算法推荐为主流意识形态建设所用,不断开辟主流意识形态建设的新境界。
出处 《新闻知识》 2021年第5期80-84,共5页 News Research
  • 相关文献

参考文献5

二级参考文献29

  • 1周凡.论拉克劳后马克思主义转向之前的接合概念[J].马克思主义与现实,2005,57(2):55-64. 被引量:4
  • 2申小翠.“意识形态”概念的历史流变[J].中国社会科学院研究生院学报,2006(4):35-41. 被引量:9
  • 3Joseph A Konstan, Bradley N Miller,David Maltz,et al. Grou-pLens : Applying Collaborative Filtering to Usenet news [ J].Commun. ACM,1997,40(3) :77-87.
  • 4Yang S, Long B,Smole A,et al. Collaborative Competitive Filte-ring :Learning Recommender Using Context for User Choice[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information Retrieval (SI-GIR 11)[C]. New York, NY, USA:ACM,2011:295-304.
  • 5Linden G,Smith B, York J Amazon. Com Recommendations:I-tem-to-item Collaborative Filtering[ J]. IEEE Internet Compu-ting,2003,7(1) :76-80.
  • 6Goldberg K,Roeder T, Gupta D, et al. Eigentaste: A ConstantTime Collaborative Filtering Algorithm[ J]. Information RetrievalJ,2001,4(2) :133-151.
  • 7Fabiano Belem,Eder Martins,Tatiana Pontes, et al. AssociativeTag Recommendation Exploiting Multiple Textual Features[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information [ C]. NewYork, NY, USA: ACM, 2011:1033-1042.
  • 8Dong A,Zhang R, Kolari P,et al. Time is of the Essence : Impro-ving Recency Ranking Using Twitter Data[ A]. Proceedings ofthe 19th Int. Conf. on World Wide Web (WWW) [C]. NewYork, NY, USA:ACM,2010:331-340.
  • 9Chen J, Naim R, Nelson L, et al. Short and Tweet: Experi-ments on Recommending Content From Information Streams[A]. Proceedings of the 28 th International Conference on HumanFactors in Computing Systems (CHI 10) [ C]. New York, NY,USA: ACM, 2010: 1185-1194.
  • 10Fabian Abel, Qi Gao, Geert-Jan Houben, et al. Analyzing UserModeling on Twitter for Personalized News Recommendations[A]// Proceedings of the 19th International Conference[C].Girona, Spain:UMAP,2011 :1-12.

共引文献1578

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部