摘要
针对复杂网络社团结构提取问题提出了离散Hopfield神经网络(DHNN)算法,并对这种算法的稳定性做了理论和实践上的分析。证明了从任意的初值出发,经过若干次迭代后最终收敛到1个吸引子或1个长度为2的极限环;给出了DHNN的能量函数与模块度函数之间的关系,证明了网络的稳定点对应于一个极大的模块度函数Q值。
Aiming at the problem of complex network community structure extraction,a discrete Hopfield neural network(DHNN)algorithm is proposed,and the stability of this algorithm is analyzed theoretically and practically.The results obtained are:It is proved that starting from an arbitrary initial value,after several iterations,it finally converged to an attractor or a limit cycle of length 2;the relationship between the energy function of DHNN and the modularity function is given.It is proved that the stable point of the network corresponds to a maximum Q value of the modularity function.
作者
代婷婷
林仕勋
胡晓飞
DAI Tingting;LIN Shixun;HU Xiaofei(School of Mathematics and Statistics,Zhaotong University,Zhaotong,Yunnan 657000,China)
出处
《贵州师范大学学报(自然科学版)》
CAS
2021年第5期82-86,共5页
Journal of Guizhou Normal University:Natural Sciences
基金
云南省教育厅科学研究基金项目(项目编号:2017ZDX041)。
关键词
复杂网络
神经网络
模块度函数
社团结构
特征向量
complex network
neural network
modularity function
community structure
feature vector