期刊文献+

Polygenic risk scores: effect estimation and model optimization

原文传递
导出
摘要 Background:Polygenic risk score(PRS)derived from summary statistics of genome-wide association studies(GWAS)is a useful tool to infer an individuaPs genetic risk for health outcomes and has gained increasing popularity in human genetics research.PRS in its simplest form enjoys both computational efficiency and easy accessibility,yet the predictive performance of PRS remains moderate for diseases and traits.Results:We provide an overview of recent advances in statistical methods to improve PRS's performance by incorporating information from linkage disequilibrium,functional annotation,and pleiotropy.We also introduce model validation methods that fine-tune PRS using GWAS summary statistics.Conclusion:In this review,we showcase methodological advances and current limitations of PRS,and discuss several emerging issues in risk prediction research.
出处 《Quantitative Biology》 CSCD 2021年第2期133-140,共8页 定量生物学(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部