期刊文献+

泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性 被引量:3

Low-speed impact response of the composite sandwich panels with S-type foldcore filled by foam
原文传递
导出
摘要 为了研究泡沫填充褶皱夹芯结构低速冲击响应特性与损伤机制,采用热压法制备了玻璃纤维增强S型褶皱夹芯板,并使用聚氨酯泡沫进行了填充,通过落锤试验机对夹芯板节点与基座两个位置进行了冲击试验。研究表明,冲击位置对泡沫填充褶皱夹芯板的失效模式存在影响。当冲击位置为节点时,夹芯板芯子以凸侧面曲面壁压溃断裂失效为主,泡沫的填充起到了提供力矩的作用。当冲击位置为基座时,夹芯板芯子以凹侧面曲面壁撕裂和凸侧面曲面壁压溃失效为主,夹芯板损伤沿板厚度方向扩展充分,导致冲击载荷均匀化。在相同冲击能量下,节点与基座冲击相比,夹芯板的最大载荷力提高,并且比较稳定。此外,节点载荷峰值产生的冲击位移较低于基座冲击。 In order to study the low-velocity impact response characteristics and damage mechanism of foam filled sandwich structure with folded core,the glass fiber reinforced S-type sandwich panel with folded core was prepared by hot pressing.Sandwich panel was filled by polyurethane foam,and the impact test was carried out on two positions of sandwich panel notes and pedestal through the drop weight testing machine.The research shows that the impact position greatly affects the failure mode of the S-type sandwich panels folded core filled by foam.When the impact position is node,the core of the sandwich panel collapsing and collapsing is mainly caused by the convex side surface wall.When the impact position is node,the core of the sandwich panel collapsing and breaking is mainly caused by the convex side surface wall,and the filling of the foam plays a role in providing torque.When the impact position is the pedestal,the core of the sandwich panel is mainly caused by the tearing of the concave surface wall and the crushing failure of the convex surface wall.The damage of the sandwich panel extends fully along the thickness direction of the plate,resulting in the homogenization of the impact load.Under the same impact energy,the maximum impact load of the node is higher than that of the pedestal,and it is more stable.In addition,the impact displacement caused by the peak load of the node is lower than that of the base impact.
作者 邓云飞 张伟岐 吴华鹏 王轩 杜晶 DENG Yunfei;ZHANG Weiqi;WU Huapeng;WANG Xuan;DU Jing(College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China)
出处 《复合材料学报》 EI CAS CSCD 北大核心 2021年第8期2605-2615,共11页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11702317) 中央高校基本科研业务费资(3122019092)。
关键词 夹芯结构 褶皱芯子 冲击 失效机制 复合材料 sandwich structure foldcore impact failure mechanism composite
  • 相关文献

参考文献3

二级参考文献11

  • 1姜金辉,王自力.一种基于IFP的单壳舷侧耐撞结构[J].船舶力学,2004,8(5):80-85. 被引量:11
  • 2Kitamura O. Comparative study on collision resistance of side structure[J]. Marine Technology, 1998,34(2):293-308.
  • 3Jung Yeob kirn, Lee Jae Wook, On the structural energy absorbing system for the double hull tanker[C]//Proc, of the 7^th International Marine Design Conference, 2000:305-312.
  • 4G Wang etc. Collision and grounding[C]//16th International Ship and Offshore Structures Congress, 2006.
  • 5By Hanydn N. G Wadley. Multifunctional periodic cellular metals [J]. Phil. Trans. R. Soc. A 2006, 364: 31-68.
  • 6Pentti KUJALA, Alan KLANAC. Steel sandwich panels in marine applications [J]. BRODOGRADNJA, 2005, 56(4): 305-314.
  • 7Mouritz AP, Gellert E, Burchill P, Challis K. Review of advanced composite structures for naval ships and submarines [J]. Composite Structures, 2001, 53(1): 21-41.
  • 8Pizhong Qiao, Mijia Yang, Ayman S. MosaUam. Impact analysis of l-Lam sandwich system for over-height collision protection of highway bridges [J]. Engineering Structures, 2004, 26: 1003-1012.
  • 9张延昌.船舶特种耐撞结构设计研究[D].镇江:江苏科技大学,2006.
  • 10王自力,顾永宁.提高VLCC侧向抗撞能力的一种新式双壳结构[J].船舶力学,2002,6(1):27-36. 被引量:27

共引文献25

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部