期刊文献+

结合降噪和自注意力的深度聚类算法 被引量:2

Deep Clustering Algorithm Based on Denoising and Self-Attention
下载PDF
导出
摘要 近几年,联合聚类划分和表示学习的深度聚类方法提供了出色的聚类性能,但随着图像质量的下降(比如噪声图像),聚类结果还不能令人满意。为此,提出一种新的深度聚类算法(DDC)。深度卷积降噪自编码器学习噪声数据的特征表示;自注意力机制提高网络捕获局部关键信息的能力;端到端的联合训练得到合适的特征表示并完成聚类分配;对数据点和类中心的相似度赋予不同的权重,扩大同类和异类之间的差异。在公开图像数据集上的实验表明DDC算法的聚类性能更高;并与其他深度聚类算法进行对比,例如在COIL-20上DDC的聚类精度是0.803,而DEC算法仅是0.597。总之,结合自注意力和深度卷积降噪自编码器的DDC算法能对噪声图像进行更有效的聚类分析,扩大了图像聚类的应用范围。 Recently,deep clustering methods have achieved perfect clustering performances,which simultaneously perform clusters assignment and features representation learning.However,the performances greatly degenerate with the decreasing of images quality such as noisy image.To this end,a novel deep clustering method DDC(deep denoising clustering)is proposed.A deep convolutional denoising auto-encoder is employed to learn the robust features representation from noisy image,and self-attention mechanism improves the ability of capturing local features.End-to-end jointly training obtains features more suitable to clustering tasks and then completes clustering assignment.The similarities between feature embeddings and cluster-centers are weighted by different coefficients to enlarge the differences between intra-clusters and inter-clusters.The experimental results on the public datasets demonstrate that the proposed DDC can provide better clustering performances.And compared with other deep clustering algorithms,for example,the clustering accuracy of DDC is 0.803 while DEC(deep embedding clustering)is 0.597 on the COIL-20 dataset.Overall,DDC algorithm with the help of deep convolutional denoising auto-encoder and self-attention can efficiently group noisy images,and further enlarges the application range of deep clustering analysis.
作者 陈俊芬 张明 赵佳成 谢博鋆 李艳 CHEN Junfen;ZHANG Ming;ZHAO Jiacheng;XIE Bojun;LI Yan(Hebei Key Laboratory of Machine Learning and Computational Intelligence,College of Mathematics and Information Science,Hebei University,Baoding,Hebei 071002,China;School of Applied Mathematics,Beijing Normal University Zhuhai,Zhuhai,Guangdong 519087,China)
出处 《计算机科学与探索》 CSCD 北大核心 2021年第9期1717-1727,共11页 Journal of Frontiers of Computer Science and Technology
基金 广东省自然科学基金(2018A0303130026) 河北省高等学校科学技术研究项目青年基金(QN2018251) 河北大学高层次创新人才科研启动经费项目。
关键词 深度聚类 特征表示 卷积降噪自编码器 自注意力机制 聚类精度 deep clustering feature representation denoising convolutional auto-encoder self-attention mechanism clustering accuracy
  • 相关文献

参考文献3

二级参考文献40

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2杨盛春,贾林祥.神经网络内监督学习和无监督学习之比较[J].徐州建筑职业技术学院学报,2006,6(3):55-58. 被引量:5
  • 3李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 4Han J W, Kamber M. Data Mining Concepts and Techniques. 2nd ed. New York:Elsevier Inc, 2006. 383-424.
  • 5Jain A K. Data clustering:50 years beyond K-means. Pattern Recogn Lett, 2010, 31:651-666.
  • 6Williamson B, Guyon I. Clustering:science or art?. J Mach Learn Res, 2012, 27:65-80.
  • 7Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315:972-976.
  • 8Rodri?uez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344:1492-1496.
  • 9Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw Learn Syst, 2005, 16:645-678.
  • 10McQueen J. Some methods for classification and analysis of multivariate observations. In:Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Los Angeles:University of California, 1967. 281-297.

共引文献264

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部