期刊文献+

基于启发式矩匹配法的分布式电源选址定容方法 被引量:7

Method of Location and Capacity Determination for Distributed Generation Based on Heuristic Moment Matching Method
下载PDF
导出
摘要 可再生分布式发电普及率的上升,给配电网规划带来了不确定性。针对可再生分布式发电的不确定性问题,提出了一种分布式电源接入配电网的选址定容方法。首先采用综合多种灵敏度指标的方法确定分布式电源候选接入节点顺序,以减小潜在求解空间的范围。然后采用启发式矩匹配法捕获历史风速、辐照、环境温度和负荷需求数据的目标矩(包括期望、方差、偏度和峰度)和相关性,生成代表性场景。最后以年综合费用最小和平均电压偏差最小为目标,采用带精英保留策略的非支配排序遗传算法进行优化求解,确定最佳的分布式电源接入位置和容量。以IEEE-33节点配电系统为例,验证了所提模型的有效性。 The increasing popularity of renewable distributed generation(DG)brings uncertainties to distribution net⁃work planning.Aimed at the uncertainty problem of renewable DGs,a method of location and capacity determination for DG access to distribution network is proposed in this paper.First,the order of candidate access buses of DG is deter⁃mined by integrating multiple sensitivity indexes to reduce the range of the potential solution space.Then,the heuristic moment matching(HMM)method is used to capture the target moments(including expectation,variance,skewness and kurtosis)and correlations of historical wind speed,radiation,ambient temperature and load demand data,so as to generate representative scenarios.Finally,in order to minimize the annual comprehensive cost and average voltage devi⁃ation,the non-dominated sorted genetic algorithm-Ⅱ(NSGA-Ⅱ)with the elite retention strategy is used to optimize the solution,and the optimal access location and capacity of DGs are determined.An IEEE 33-bus distribution system is taken as an example,which verifies the effectiveness of the proposed model.
作者 郑建 徐青山 施雨松 ZHENG Jian;XU Qingshan;SHI Yusong(School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处 《电力系统及其自动化学报》 CSCD 北大核心 2021年第8期15-23,共9页 Proceedings of the CSU-EPSA
基金 国家自然科学基金资助项目(51877044)。
关键词 分布式电源 不确定性 灵敏度指标 启发式矩匹配法 非支配排序遗传算法 distributed generation uncertainty sensitivity index heuristic moment matching method non-dominated sorted genetic algorithm-Ⅱ(NSGA-Ⅱ)
  • 相关文献

参考文献12

二级参考文献149

共引文献258

同被引文献124

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部