期刊文献+

年龄等级结构捕食种群系统的可控性与镇定 被引量:1

Controllability and stabilization of hierarchical predator-prey system of age-structured populations
下载PDF
导出
摘要 研究一类基于个体年龄的等级结构捕食种群系统模型的近似可控性及零解镇定问题.以线性系统的可控性结果为基础,运用多值映射的不动点方法证明了非线性系统的可控性,通过构造辅助的最优控制问题给出了控制策略的选取原则.当零解不稳定时,借助反馈控制和共轭系统对镇定所需的迁移控制作了精细描述. This paper is concerned with the controllability and stabilization of the zero state for a hierarchical system of age-dependent population model.Based on a result in linear systems,the approximate controllability of the nonlinear model is proved by the Fan-Glicksberg's fixed theorem in multi-valued mappings,and the choice of the control is speci fied by an auxiliary optimal control problem.When the zero state is unstable,a stabilizing migration policy is carefully described by a feedback control and an adjoint system.
作者 何泽荣 徐俊芳 HE Ze-rong;XU Jun-fang(Institute of Operational Research and Cybernetics,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《高校应用数学学报(A辑)》 北大核心 2021年第3期253-264,共12页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11871185) 浙江省自然科学基金(LY18A010010)。
关键词 年龄等级 捕食关系 可控性 镇定 Fan-Glicksberg不动点定理 切锥法锥 hierarchy of ages predator-prey interaction controllability stabilization Fan-Glicksberg's fixed points tangent-normal cones
  • 相关文献

参考文献3

二级参考文献25

  • 1姚秀玲,陈任昭.时变种群系统最优生育率控制的非线性问题[J].东北师大学报(自然科学版),2005,37(4):1-6. 被引量:2
  • 2陈任昭,李健全.一类时变人口系统正则解的唯一性[J].东北师大学报(自然科学版),1996,28(1):1-4. 被引量:3
  • 3付军,陈任昭.年龄相关的时变种群系统的边界能控性[J].东北师大学报(自然科学版),2007,39(1):1-6. 被引量:6
  • 4Lansun Chen, Models and Research Methods of Mathematical Ecology, Science Press~ Beijing, 1988.Bean-San Goh, Management and Analysis of Biological Populations, Elsevier Scientific Publishing Company, New York, 1980.
  • 5C. W. Clark, Mathematical Bioscieconomics: The Optimal Management of Renewable Resources,Wiley, New York, 1990.
  • 6C. W. Clark, Mathematical Bioscieconomics: The Optimal Management of Rencwable Resources,Wiley, New York, 1990.
  • 7M. Fan and K. Wang, Optimal harvesting policy for single population with periodic coeffcients,Mathematical Biosciences, 1998, 152:165-177.
  • 8X. A. Zhang and L. S. Chen, The stage-structured predator-prey model and optimal harvesting policy, Mathematical Biosciences, 2000, 168:201-210.
  • 9X. Y. Song and L. S. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Mathematical Biosciences, 2001, 170:173-186.
  • 10D. S. Boukal and V. Krivan, Lyapunov functions for Lotka-Volterra predator-prey models with optimal foraging behavior, Journal of Mathematical Biology, 1999,39:493-517.

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部