期刊文献+

基于Alexnet的金相识别研究

Research on Metallographic Identification Based on Alexnet
下载PDF
导出
摘要 对《机械工程材料综合实验》课程后期的金相组织图像处理,以深度学习代替人眼观察进行自动识别分类。通过建立金相组织图像库,分析各类材料金相组织的不同形态特征,结合Alexnet神经网络模型,研究面向不同组织金相识别的Alexnet迁移学习方法,实现金相图像的自动识别。在4类不同的金相组织图像样本库上进行图像识别实验,准确率达到99.63%,能够快速地实现不同材料的区分。与通过人眼观察的方法对比,可大大减少人工操作的工作量,且方法迅速准确。 Automatic recognition and classification based on deep learning instead of human eye observation in the metallographic structure image processing of"comprehensive experiment of mechanical engineering materials"course.Through the establishment of metallographic structure image database,the different morphological characteristics of various materials'metallographic structures are analyzed.Combined with the Alexnet neural network model,the Alexnet migration learning method for metallographic identification of different structures is studied,and the automatic recognition of metallographic images is realized.The experimental results show that the accuracy of image recognition is 99.63%,which can quickly distinguish different materials.Compared with the method of human eye observation,it can greatly reduce the workload of manual operation,and the method is rapid and accurate.
作者 谭兆湛 官振林 TAN Zhaozhan;GUAN Zhenlin(Guangzhou College of South China University of Technology,Guangzhou 510800,China)
出处 《机械工程师》 2021年第9期38-40,43,共4页 Mechanical Engineer
基金 大学生创新创业训练计划(52JY200515)。
关键词 金相组织 图像识别 深度学习 Alexnet metallographic structure image identification deep learning Alexnet
  • 相关文献

参考文献5

二级参考文献70

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献740

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部