期刊文献+

基于一致性差分进化的分布式任务分配 被引量:4

Consensus-Based Differential Evolution for Decentralized Task Allocation
下载PDF
导出
摘要 针对异构无人飞行器(UAV)集群在强约束条件下执行多类任务的最优分配问题,将自适应参数差分进化算法与分布式架构结构融合,形成了基于一致性机制的分布式差分进化(CBDE)算法,在处理既定目标任务分配时达到了集中式方法的优化效果。在算法实施过程中,集群个体作为具有计算能力的局部优化器,异步执行改进的自适应参数差分进化算法,并通过UAV间的通信拓扑,按照一定的决策规则,共享个体适应度和分配结果,最终实现全局一致的效果。与集中式方法的仿真对比发现,CBDE算法求解中小规模任务分配问题的时间更短,执行效率更高,而且灵活的扩展性非常适合向大规模集群任务分配问题推广。 Aiming at the problem of optimal assignment of multiple tasks in heterogeneous Unmanned Aerial Vehicle( UAV) swarm under strong constraint conditions,a Consensus-Based Differential Evolution( CBDE) algorithm based on consistency mechanism is formed by integrating adaptive parameter differential evolution algorithm with distributed architecture structure,which achieves the optimization effect of centralized method when dealing with the given target task assignment. During the implementation of the algorithm,as a local optimizer with computing capability,the individuals execute the improved adaptive parameter differential evolution algorithm asynchronously,and share the individual fitness and allocation results according to certain decision-making rules through the communication topology between UAVs,so as to achieve the effect of global consistency. The simulation results show that,compared with the centralized method,the CBDE algorithm has shorter operating time for medium and small-scale task allocation problem,higher execution efficiency and flexible scalability,which is also suitable for large-scale swarm task allocation problem.
作者 朱晓宇 何兵 刘刚 王海民 ZHU Xiaoyu;HE Bing;LIU Gang;WANG Haimin(Rocket Force University of Engineering,Xi'an 710000,China;State Grid Zhongwei Power Supply Company,Zhongwei 755000,China)
出处 《电光与控制》 CSCD 北大核心 2021年第9期20-24,38,共6页 Electronics Optics & Control
基金 青年科学基金(61403399)。
关键词 无人飞行器 任务分配 差分进化 分布式 一致性 UAV task allocation differential evolution decentralization consistency
  • 相关文献

参考文献2

二级参考文献20

  • 1石纯一,张伟.基于Agent的计算[M].北京:清华大学出版社.2007:11-12,119-120.
  • 2James Moffat.网络中心战与复杂性理论[M].郁军,贲可荣,等译.北京:电子工业出版社,2004.9.
  • 3Sandholm T. An implementation of the contract net protocol based on marginal cost calculations [C]// Proceedings of the llth National Conference on Artificial Intelligence, Washington DC, USA, 1993. USA: AAAI Press, 1993: 256-262.
  • 4Smith R Ca. The contract net protocol: high level communication and control in distributed problem solver [J]. IEEE Transactions on Computers (S0018-9340), 1980, 29(12): 1104-1113.
  • 5Andersson M, Sandholm T. Time-quality tradeoffs in real-locative negotiation with combinatorial contract types [C]// Proceedings of the National Conference on Artificial Intelligence, Orlando, USA, 1999. USA: AAAI Press, 1999: 3-10.
  • 6Golfarelli M, Maio D, Rizzi S. Multi-agent path planning based on task-swap negotiation [C]// Proceedings of the 16th UK Planning and Scheduling SIG Workshop, Durham, England, 1997. UK: AAAI Press, 1997: 69-82.
  • 7Ferber J. Multi-agent systems : an introduction to distributed artificial intelligence. New York : Addison-Wesley, 1999.
  • 8柳林.多机器人系统任务分配及编队控制研究.国防科学技术大学,2006.
  • 9姜荣凯.无人机分布式任务规划技术研究.南京:南京航空航天大学,2008.
  • 10Smith R G. The contract net protocol, high level communication and control in distributed problem solver. IEEE Transaction on Comput- ers, 1980; 29(12) :1104-1113.

共引文献26

同被引文献42

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部