期刊文献+

基于双神经网络结构的新型人工神经网络训练算法 被引量:4

A Novel ANN Training Method Based on Dual Neural Network Architecture
下载PDF
导出
摘要 基于视觉神经系统生理学特征,提出了一种可加速神经网络训练过程的双神经网络结构,它同时提供了一种初始化神经网络的新方法。首先,对原始数据进行小波分解,将获得的近似系数在辅助神经网络中进行训练;然后将训练得到的权值和阈值传递给主神经网络;最后,利用主神经网络对全部的输入输出信号进行训练。通过非线性函数逼近、非线性动态系统辨识和井底压力预测仿真实验,并和常规的神经网络结构进行比较,结果表明:在达到相同精度的前提下,双神经网络结构极大地缩短了训练时间。 Based on physiological characteristics of human visual neural system,a new DNNA(dual neural networks architecture)was proposed to accelerate ANN training process,including a new approach to initiate weights and biases of the neural network.Firstly,having the original data decomposed with discrete wavelet transform;and then having the obtained approximation coefficients trained in an assistant neural network and the weights and thresholds obtained in training passed to the main neural network;and finally,having the main neural network employed to train all input/output signals.Through the nonlinear function approximation,nonlinear dynamic system identification,the simulation of bottom hole pressure prediction as well as the comparison with the conventional neural network structure,the results show that,the proposed DNNA can dramatically reduce the whole training time while preserving the same accuracy.
作者 毛炳强 孙铁良 孙凌祎 陈鹏 高畅 MAO Bing-qiang;SUN Tie-liang;SUN Ling-yi;CHEN Peng;GAO Chang(PipeChina Oil and Gas Control Center;Kunlun Digital Technology Co.,Ltd.)
出处 《化工自动化及仪表》 CAS 2021年第5期446-449,456,共5页 Control and Instruments in Chemical Industry
关键词 双神经网络 辅助神经网络 主神经网络 小波分解 训练时间 dual neural networks assistant neural network main neural network wavelet decompose training time
  • 相关文献

参考文献3

二级参考文献23

  • 1任重,邵军力.立体视觉中的双目匹配方法研究[J].信息与控制,2001,30(S1):727-730. 被引量:12
  • 2王勇,吴立德.图象恢复和边缘提取的后验均值方法[J].电子学报,1994,22(2):70-75. 被引量:6
  • 3Martin T Hagan howard B Demuth Mark H Beale.神经网络设计[M].北京,机械工业出版社,2002.230-239.
  • 4Yacine Oussar,Gerard Dreyfus. Initialization by selection for wavelet network training [J]. Neurocomputing, 2000(34):131 - 143.
  • 5Qinghua Zhang. Wavelet networks[J]. IEEE Trans Neural Networks, 1992,3(6) : 889 - 898.
  • 6Derrick Nguyen,Bernard Widrow. Improving the Learning Speed of 2 -Layer Neural Networks by Choosing Initial Values of the Adaptive Weights[R]. Proceedings of the IJCNN,1990(3):21 - 26.
  • 7Ackermann F. Digital image correlation: performance and potential application in photogrammetry[J]. Photogrammetric Record, 1984, 11(64):1687-1703.
  • 8Weng J. Image matching using the windowed Fourier phase [J ]. Int J Computer Vision, 1993, 11 (3) : 211-236.
  • 9Frederik Maes, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging, April, 1997, 16(3):187-198.
  • 10Olson Clark F. Maximum-likelihood image matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6):853-857.

共引文献36

同被引文献48

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部