期刊文献+

轻量化神经网络加速器的设计与实现 被引量:8

Design and Implementation of Accelerator for Lightweight Neural Network
下载PDF
导出
摘要 针对以MobileNet为代表的轻量化卷积网络,基于现场可编程门阵列平台设计网络加速器。通过优化DW、PW轻量化模块并实现常用的卷积、ReLU等功能模块,满足神经网络加速器低功耗、低时延的要求,同时基于指令设计使加速器支持MobileNet及各类变种。利用上位机配置YoloV3 tiny(不含轻量模块)指令和YoloV3&MobileNet(含轻量模块)指令进行目标检测,实验结果表明,该网络加速器具有较快的推断速度,用于YoloV3tiny结构时达到85frame/s,用于YoloV3&MobileNet结构时达到62frame/s。 This paper designs a network accelerator based on the Field Programmable Gate Array(FPGA)platform for the lightweight convolutional network represented by MobileNet.By optimizing DW and PW lightweight modules and implementing commonly used convolution,ReLU and other functional modules,the neural network accelerator meets the requirements of low power consumption and low latency.At the same time,based on instruction-based design technology,the neural network accelerator supports MobileNet and its various variants.By configuring the target detection experiment of YoloV3 tiny(without lightweight modules)instructions and YoloV3&MobileNet(including lightweight modules)instructions on the host computer,the neural network accelerator can reach a faster inference speed.It reaches 85 frame/s for the YoloV3 tiny structure,reaches 62 frame/s for YoloV3&MobileNet structure.
作者 黄瑞 金光浩 李磊 姜文超 宋庆增 HUANG Rui;JIN Guanghao;LI Lei;JIANG Wenchao;SONG Qingzeng(School of Computer Science and Technology,Tianjin Polytechnic University,Tianjin 300387,China;Faulty of Computer,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第9期185-190,196,共7页 Computer Engineering
基金 广东省自然科学基金(2018A030313061) 广东省科技计划项目(2017B010124001,201902020016,2019B010139001)。
关键词 硬件加速 模型压缩 轻量化神经网络 现场可编程门阵列 并行计算 hardware acceleration model compression lightweight neural network Field Programmable Gate Array(FPGA) parallel computing
  • 相关文献

参考文献3

二级参考文献13

共引文献51

同被引文献57

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部