摘要
为更好地提取图像内容信息,提高图像分类精度,提出一种自适应卷积神经网络(CNN)图像分类算法。通过融合图像的主颜色特征,利用CNN提取空间位置特征,且针对多特征融合权重值的设定问题,运用改进的差分演化算法优化各特征权值,提高固定权值分类精确度。实验结果表明,该算法分类精度相比CNN算法提升了9.2个百分点,在图像分类中具有较好的分类效果。
To improve the accuracy of image information extraction and image classification,an adaptive Convolutional Neural Network(CNN)-based algorithm is proposed for image classification.The algorithm effectively integrates the main color features of the image,and the spatial position features are extracted by using CNN.For the setting of the weight value of multi-features fusion,an improved differential evolution algorithm is presented to optimize the feature weight,so the accuracy of classification using fixed weight is improved.Experimental results show that the algorithm provides excellent image classification results,and its classification accuracy is 9.2%higher than that of CNN.
作者
李伟
黄鹤鸣
武风英
张会云
LI Wei;HUANG Heming;WU Fengying;ZHANG Huiyun(School of Computer Science and Technology,Qinghai Normal University,Xining 810008,China;Qinghai Basic Surveying and Mapping Institute,Xining 810001,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2021年第9期235-239,251,共6页
Computer Engineering
基金
国家自然科学基金(61462072,61662062)
青海省自然科学基金(2016-ZJ-904)。
关键词
卷积神经网络
自适应权重
数据融合
差分演化算法
图像分类
Convolutional Neural Network(CNN)
adaptive weight
data fusion
differential evolution algorithm
image classification